
Tecplot, Inc.

Data Format Guide
Bellevue, WA 2008

COPYRIGHT NOTICE

W

U

t
i
i
m
h
t

A

N

U
R
9

0

R

Tecplot 360TM Data Format Guide is for use with Tecplot 360TM Version 2008.

Copyright © 1988-2008 Tecplot, Inc. All rights reserved worldwide. Except for personal use, this manual may not be reproduced, transmitted, transcribed, stored in a retrieval system, or translated in any form, in whole or in part, without the express
written permission of Tecplot, Inc., 3535 Factoria Blvd, Ste. 550; Bellevue, WA 98006 U.S.A.

The software discussed in this documentation and the documentation itself are furnished under license for utilization and duplication only according to the license terms. The copyright for the software is held by Tecplot, Inc. Documentation is provided
for information only. It is subject to change without notice. It should not be interpreted as a commitment by Tecplot, Inc. Tecplot, Inc. assumes no liability or responsibility for documentation errors or inaccuracies.

Tecplot, Inc.
Post Office Box 52708
Bellevue, WA 98015-2708 U.S.A.
Tel:1.800.763.7005 (within the U.S. or Canada), 00 1 (425)653-1200 (internationally)
email: sales@tecplot.com, support@tecplot.com
Questions, comments or concerns regarding this document: documentation@tecplot.com
For more information, visit http://www.tecplot.com

THIRD PARTY SOFTWARE COPYRIGHT NOTICES

SciPy © 2001-2002 Enthought. Inc. All Rights Reserved. NumPy © 2005 NumPy Developers. All Rights Reserved. VisTools and VdmTools © 1992-2007 Visual Kinematics, Inc. All Rights Reserved. NCSA HDF & HDF5 (Hierarchical Data Format)
Software Library and Utilities © 1988-2004 The Board of Trustees of the University of Illinois. Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign (UIUC), Lawrence Livermore
National Laboratory (LLNL), Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), Jean-l All Rights Reserved. PNG Reference Library © Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc., Copyright (c) 1996,
1997 Andreas Dilger, Copyright (c) 1998, 1999 Glenn Randers-Pehrson. All Rights Reserved. Tcl © 1989-1994 The Regents of the University of California. Copyright © 1994 The Australian National University. Copyright © 1994-1998 Sun Microsys-
tems, Inc. Copyright © 1998-1999 Scriptics Corporation. All Rights Reserved. bmptopnm © 1992 David W. Sanderson. All Rights Reserved. Netpbm © 1988 Jef Poskanzer. All Rights Reserved. Mesa © 1999-2001 Brian Paul. All Rights Reserved.

3C IPR © 1995-1998 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en Informatique et en Automatique, Keio University. All Rights Reserved. Ppmtopict © 1990 Ken Yap. All Rights Reserved.
JPEG © 1991-1998 Thomas G. Lane. All Rights Reserved.

TRADEMARKS

Tecplot®, Tecplot 360TM, the Tecplot 360TM logo, PreplotTM, Enjoy the ViewTM, and FramerTM are registered trademarks or trademarks of Tecplot, Inc. in the United States and other countries.

3D Systems is a registered trademark or trademark of 3D Systems Corporation in the U.S. and/or other countries. Macintosh OS is a registered trademark or trademark of Apple, Incorporated in the U.S. and/or other countries. Reflection-X is a registered
trademark or trademark of Attachmate Corporation in the U.S. and/or other countries. LAPACK is a registered trademark or trademark of The University of Tennessee in the U.S. and/or other countries. EnSight is a registered trademark or trademark of
Computation Engineering Internation (CEI), Incorporated in the U.S. and/or other countries. DEM is a registered trademark or trademark of DEM Solution Ltd in the U.S. and/or other countries. Exceed 3D and Hummingbird Exceed is a registered
trademark or trademark of Hummingbird Limited in the U.S. and/or other countries. Konqueror is a registered trademark or trademark of KDE e.V in the U.S. and/or other countries. VIP and VDB are registered trademarks or trademarks of Landmark
Graphics Corporation in the U.S. and/or other countries. ECLIPSE FrontSim are registered trademarks or trademarks of Schlumberger, Limited in the U.S. and/or other countries. Debian is a registered trademark or trademark of Software in the Public
Interest in the U.S. and/or other countries. X3D is a registered trademark or trademark of Web3D Consortium in the U.S. and/or other countries. X Windows is a registered trademark or trademark of X Consortium, Incorporated in the U.S. and/or other
countries. ANSYS, Fluent and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans is a registered trademark or trademark of ANSYS Incorporated or its subsidiaries in the U.S. and/or other countries. ESI/PAM -
CRASH is a registered trademark or trademark of ESI Group in the U.S. and/or other countries. LSTC/DYNA is a registered trademark or trademark of Livermore Software Technology Coroporation in the U.S. and/or other countries. MSC/NASTRAN
is a registered trademark or trademark of MSC.Software Corporation in the U.S. and/or other countries. NASTRAN is a registered trademark or trademark of National Aeronautics Space Administration in the U.S. and/or other countries. 3DSL is a reg-
istered trademark or trademark of STREAMSim Technologies in the U.S. and/or other countries. SDRC/IDEAS Universal is a registered trademark or trademark of UGS PLM Solutions Incorporated or its subsidiaries in the U.S. and/or other countries.
SciPy is a registered trademark or trademark of Enthought. Inc in the U.S. and/or other countries. NumPy is a registered trademark or trademark of NumPy Developers in the U.S. and/or other countries. Star-CCM+ is a registered trademark or trademark
of CD-adapco in the U.S. and/or other countries. VDB are registered trademarks or trademarks of Landmark Graphics Corporation in the U.S. and/or other countries. FLEXnet is a registered trademark or trademark of Macrovision Corporation and/or
Macrovision Europe Ltd in the U.S. and/or other countries. Python is a registered trademark or trademark of Python Software Foundation in the U.S. and/or other countries. VisTools and VdmTools is a registered trademark or trademark of Visual Kine-
matics, Inc in the U.S. and/or other countries. Ultimate Grid 97 is a registered trademark or trademark of DUNDAS Software, Ltd in the U.S. and/or other countries. Xbae is a registered trademark or trademark of Copyright (c) 1991, 1992 Bell Commu-
nications Research, Inc. (Bellcore), Copyright (c) 1995-99 Andrew Lister. Copyright © 1999 - 2004 by the LessTif/Xbae maintenance team in the U.S. and/or other countries. NCSA HDF & HDF5 (Hierarchical Data Format) Software Library and
Utilities is a registered trademark or trademark of The Board of Trustees of the University of Illinois in the U.S. and/or other countries. Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-
Champaign (UIUC), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), Jean-lAbaqus, the 3DS logo, SIMULIA and CATIA is a registered trademark or trademark of Das-
sault Systèmes in the U.S. and/or other countries. The Abaqus runtime libraries are a product of Dassault Systèmes Simulia Corp., Providence, RI, USA.FLOW3D is a registered trademark or trademark of Flow Science, Incorporated in the U.S. and/or
other countries. Adobe, Flash, Flash Player, Premier and PostScript is a registered trademark or trademark of Adobe Systems, Incorporated in the U.S. and/or other countries. AutoCAD and DXF is a registered trademark or trademark of Autodesk, Incor-
porated in the U.S. and/or other countries. Ubuntu is a registered trademark or trademark of Canonical, Limited in the U.S. and/or other countries. HP, LaserJet and PaintJet is a registered trademark or trademark of Hewlett-Packard Company in the U.S.
and/or other countries. IBM, RS/6000 and AIX is a registered trademark or trademark of International Business Machines Corporation in the U.S. and/or other countries. Helvetica Font Family and Times Font Family is a registered trademark or trade-
mark of Linotype GmbH in the U.S. and/or other countries. Linux is a registered trademark or trademark of Linus Torvalds in the U.S. and/or other countries. ActiveX, Excel, Microsoft, Visual C++, Visual Studio, Windows, Windows Metafile, Win-
dows XP, Windows Vista, Windows 2000 and PowerPoint is a registered trademark or trademark of Microsoft Corporation in the U.S. and/or other countries. Firefox is a registered trademark or trademark of Mozilla Corporation in the U.S. and/or other
countries. Netscape is a registered trademark or trademark of Netscape Communications Corporation in the U.S. and/or other countries. SUSE is a registered trademark or trademark of Novell, Incorporated in the U.S. and/or other countries. Red Hat is
a registered trademark or trademark of Red Hat, Incorporated in the U.S. and/or other countries. SPARC is a registered trademark or trademark of SPARC International, Incorporated in the U.S. and/or other countries. Products bearing the SPARC trade-
mark are based on architecture developed by Sun Microsystems, Inc.Solaris, Sun and SunRaster is a registered trademark or trademark of Sun MicroSystems, Incorporated in the U.S. and/or other countries. Courier Font Family is a registered trademark
or trademark of The Monotype Corporation in the U.S. and/or other countries. UNIX and Motif is a registered trademark or trademark of The Open Group in the U.S. and/or other countries. Qt is a registered trademark or trademark of Trolltech in the

.S. and/or other countries. Zlib is a registered trademark or trademark of Jean-loup Gailly and Mark Adler in the U.S. and/or other countries. OpenGL is a registered trademark or trademark of Silicon Graphics, Incorporated in the U.S. and/or other
countries. xpm is a registered trademark or trademark of GROUPE BULL in the U.S. and/or other countries. ftplib is a registered trademark or trademark of Thomas Pfau in the U.S. and/or other countries. PNG Reference Library is a registered trade-
mark or trademark of Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc., Copyright (c) 1996, 1997 Andreas Dilger, Copyright (c) 1998, 1999 Glenn Randers-Pehrson in the U.S. and/or other countries. Tcl is a registered trademark or trademark
of The Regents of the University of California. Copyright © 1994 The Australian National University. Copyright © 1994-1998 Sun Microsystems, Inc. Copyright © 1998-1999 Scriptics Corporation in the U.S. and/or other countries. gltt is a registered
rademark or trademark of Stephane Rehel in the U.S. and/or other countries. bmptopnm is a registered trademark or trademark of David W. Sanderson in the U.S. and/or other countries. Netpbm is a registered trademark or trademark of Jef Poskanzer
n the U.S. and/or other countries. pthreads is a registered trademark or trademark of John E. Bossum. Copyright(C) 1999,2002 Pthreads-win32 contributors in the U.S. and/or other countries. Copyright(C) 1999,2004 Pthreads-win32 contributorsMesa
s a registered trademark or trademark of Brian Paul in the U.S. and/or other countries. W3C IPR is a registered trademark or trademark of World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en Infor-

atique et en Automatique, Keio University in the U.S. and/or other countries. Ppmtopict is a registered trademark or trademark of Ken Yap in the U.S. and/or other countries. freetype is a registered trademark or trademark of David Turner, Robert Wil-
elm, and Werner Lemberg in the U.S. and/or other countries. Motif is a registered trademark or trademark of Open Software Foundation, Inc in the U.S. and/or other countries. © Copyright 1996-2000 The Open Group and othersJPEG is a registered
rademark or trademark of Thomas G. Lane in the U.S. and/or other countries.

ll other product names mentioned herein are trademarks or registered trademarks of their respective owners.

OTICE TO U.S. GOVERNMENT END-USERS

se, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the Commercial Computer-Restricted Rights clause at FAR 52.227-19 when applicable, or in subparagraph (c)(1)(ii) of the
ights in Technical Data and Computer Software clause at DFARS 252.227-7013, and/or in similar or successor clauses in the DOD or NASA FAR Supplement. Contractor/manufacturer is Tecplot, Inc., 3535 Factoria Blvd, Ste. 550; Bellevue, WA
8006 U.S.A.

8-360-05-1

ev 01/2008

Table of Contents
Chapter 1 Introduction.. 5

Creating Data Files for Both Tecplot 360 & Tecplot Focus6
Best Practices ..6

Chapter 2 Binary Data.. 9

Getting Started...9
Viewing Your Output ..10
Binary Function Notes .. 11

Deprecated Binary Functions .. 11
Character Strings in FORTRAN .. 11
Boolean Flags ..12

Binary Data File Function Calling Sequence12
Writing to Multiple Binary Data Files12
Linking with the TecIO Library13

UNIX/Linux/Macintosh: ..13
Windows:..13

Binary Data File Function Reference..............................14
Defining Polyhedral and Polygonal Data........................48

Boundary Faces and Boundary Connections48
FaceNodeCounts and FaceNodes......................................50
FaceRightElems and FaceLeftElems52
FaceBoundaryConnectionElements and Zones54

Examples ...54
Face Neighbors..54
Polygonal Example ..65
Multiple Polyhedral Zones ..73
3

Table of Contents
Multiple Polygonal Zones ..92
Polyhedral Example... 113
IJ-ordered zone .. 118
Switching between two files ...121
Text Example ..126
Geometry Example...128

Chapter 3 ASCII Data 133

Preplot ... 133
Syntax Rules & Limits .. 133
ASCII File Structure ... 134

File Header ...135
Zone Record ...137
Text Record ..150
Geometry Record ...153
Custom Labels Record ...157
Data Set Auxiliary Data Record158
Variable Auxiliary Data Record.......................................159
ASCII Data File Parameter Assignment Values159

Ordered Data ... 160
I-Ordered Data ..160
IJ-Ordered Data...160
IJK-Ordered Data ..161
Ordered Data Examples...161

Finite-Element Data .. 170
Variable and Connectivity List Sharing172
Finite-Element Data Set Examples174

ASCII Data File Conversion to Binary 189
Preplot Options ..189
Preplot Examples ...189

Chapter 4 Glossary ... 191

Appendix A Binary Data File Format 197
4

Chapter 1 Introduction
Tecplot 360 can read in data produced in many different formats, one of which is its own native
format. Refer to Chapter 22 “Creating a Data Loader” in the ADK User’s Manual for information
on creating a data loader add-on for use with Tecplot 360.

This manual describes how to output your data into the Tecplot 360 data format. The following
chapters are included in the manual:

• Chapter 2 “Binary Data” - Refer to this chapter for details on outputting data into
Tecplot 360’s binary file format (*.plt). The chapter also includes instructions for
linking with the TecIO library (a library of functions used to create binary data,
included in your distribution). Refer to the final section in the chapter for detailed
examples.

• Chapter 3 “ASCII Data” - We strongly recommend that you create binary data files.
However, the ASCII data chapter is provided to allow you to create simple data files.

• Chapter 4 “Glossary” - Refer to the Glossary for the definitions of terms used
throughout the manual.

Before continuing to either the Binary or
ASCII chapter, please review Section 1 - 2
“Best Practices”.
5

Introduction
1 - 1 Creating Data Files for Both Tecplot 360 & Tecplot Focus

If you intend to create data files that will load in both Tecplot 360 and Tecplot Focus, you need to
be aware that polyhedral/polygonal zones are not supported in Tecplot Focus. If any of the zones in
a given data file are polyhedral, you will not be able to load the data file into Tecplot Focus. To
create data files that will load in both products, you must use either ordered zones or cell-based
finite-element zones (triangular, quadrilateral, tetrahedral or brick elements).

1 - 2 Best Practices
Users who wish to generate native Tecplot 360 data files automatically from applications such as
complex flow solvers have a number of options for outputting data into Tecplot’s data format. This
section outlines a few "best practices" for outputting your data into Tecplot 360 data format.

1. Create Binary Data Files instead of ASCII
All else being equal, binary data files are more efficient than ASCII files, in terms of
disk space and time to first image. To create binary data files, you may use functions
provided in the TecIO library included with your Tecplot distribution. To create
ASCII files, you can write-out plain text using standard write statements.
There are some cases where ASCII files are preferred. Create ASCII files when:

• Your data files are small.
• Your application runs on a platform for which the TecIO library is not pro-

vided. Even if this is the case, please contact us at support@tecplot.com. There
may be a way to resolve this issue.

2. Use Block Format instead of Point Format

For the purposes of this discussion, “polyhe-
dral” refers to either polyhedral or polygo-
nal zones.

Tecplot 360 includes a utility called Preplot which
allows you to convert an ASCII file into a binary
file. See Section B - 4 “Preplot” in the User’s Man-
ual for more information on how to use Preplot.
6

mailto:support@tecplot.com

Best Practices
Block format is by far the most efficient format when it comes to loading the file into
Tecplot 360. If your data files are small and you can only obtain the data in a point-
like format (e.g. with a spreadsheet), then using point format is acceptable.

3. Use the Native Byte Ordering for the Target Machine
When you create binary data, you can elect to produce these files in either Motorola
byte order or Intel byte order. Tecplot 360 automatically detects the byte order and
loads both types. However, it is more efficient if you produce files using the byte order
used on the platform where you run Tecplot 360. For example if you produce a binary
file on an SGI platform and then transfer the data to a Windows® platform or Intel-
based Linux box, you should set the flag to reverse the bytes when generating the
binary data file. See the notes about this option in Section B - 4 “Preplot” in the
User’s Manual for the Preplot flag.

4. Add Auxiliary data to Preset Variable Assignments in Tecplot 360
 Zone Auxiliary data can be used to give Tecplot 360 hints about properties of your
data. For example, it can be used to set the defaults for which variables to use for cer-
tain kinds of plots. Auxiliary data is supported by both binary and ASCII formats.
Refer to Section “TECZAUXSTR111” on page 41 or Section 3- 3.6 “Data Set Auxil-
iary Data Record” for information on working with auxiliary data in binary or ASCII
data files, respectively. For a list of auxiliary data names, see Chapter 9 “Using Stan-
dardized Auxiliary Data” in the ADK User’s Manual.

5. Data Sharing
Share variables whenever possible. Variable sharing is commonly used for the spatial
variables (X, Y, and Z) when you have many sets of data that use the same basic grid.
This saves disk space, as well as memory when the data is loaded into Tecplot 360. In
addition, the benefits are compounded with scratch data derived from these variables
because it is also shared within Tecplot 360. See also Section “TECZNE111” on
page 42 (for binary data) or Section 3- 5.1 “Variable and Connectivity List Sharing”
(for ASCII data).

6. Passive Variables

NOTE: ASCII files in point format will be in point
format when converted to binary format using Pre-
plot.
7

Introduction
Tecplot 360 can manage many datasets at the same time. However, within a given
dataset you must supply the same number of variables for each zone. In some cases
you may have data where there are many variables and, for some of the zones some of
those variables are not important. If that is the case, you can set selected variables in
those zones to be passive. A passive variable is one that will always return the value
zero if queried (e.g. in a probe) but will not involve itself in operations such as the cal-
culations of the min and max range. This is very useful when calculating default con-
tour levels.
8

Chapter 2 Binary Data
This chapter is intended for experienced programmers who need to create Tecplot binary data files
directly. Support for topics discussed in this chapter is limited to general questions about writing
Tecplot binary files. It is beyond the scope of our Technical Support to offer programming advice,
and to debug programs.

Data files for Tecplot 360 are commonly created as output from an application program. These files
are most often in ASCII format, and are then converted to a binary format with Preplot (see Section
3 - 1 “Preplot” for additional information).

To output your data into Tecplot’s binary format, you may use the static library provided with your
Tecplot 360 installation or you may write your own binary functions. If you wish to write your own
functions, refer to Appendix A “Binary Data File Format” for details on the structure of Tecplot’s
binary file format. If you wish to link with the library provided by Tecplot, begin with Section 2 - 1
“Getting Started” and use Appendix A “Binary Data File Format” for reference.

2 - 1 Getting Started
Your Tecplot 360 distribution includes a library of utility functions that you can link with your
application to create binary data files directly, bypassing the use of ASCII files. This allows for
fewer files to manage, conserves disk space, and saves the time required to convert the files.

On UNIX®, Linux®, Macintosh® platforms, the utility functions discussed in Section 2 - 7 “Binary
Data File Function Reference” are available in the library archive tecio.a which is located in the
lib directory below the $TEC_360_2008 Directory. On Windows platforms, this library is called
TecIO.lib and is located in the bin sub-directory of your installation.

When preparing to output your data in Tecplot’s binary format using the TecIO library, we recom-
mend you perform the following steps:

1. Review Section 2 - 4 and Section 2 - 5 of this manual.
9

Binary Data
2. Review the example files provided in the util/tecio directory of your Tecplot installa-
tion. The example programs demonstrate the use of the TecIO utility functions and
are provided in both FORTRAN and C:

• simtest.f, simtest.f90, simtest.c - Demonstrates simple use of the
TecIO utility functions.

• comtest.f, comtest.f90, comtest.c - Demonstrates the complex use of
TecIO utility functions such as multiple file generation and transient data.

3. Follow the instructions in Section 2 - 6 “Linking with the TecIO Library” for informa-
tion on linking with the TecIO library.

4. Begin developing your code.

2 - 2 Viewing Your Output
You may load your binary files in Tecplot using the Tecplot Data loader (refer to Section 4 - 15
“Tecplot-Format Loader” for details). In addition, you may view information about your data file
using any of the following techniques:

• Pltview - Pltview is a command line utility that displays the header information for
your file. It is installed in $TEC_360_2008/bin. Refer to Section B - 6 “Pltview” on
page 693 in the User’s Manual for details on working with pltview.

• View Binary - The ViewBinary add-on allows you to view the information in a Tecplot
binary data (.plt) file. It is included in a standard Tecplot distribution. Refer to
Section 33- 3.19 “View Binary” on page 672 in the User’s Manual for details.

• Data Set Information dialog - You may use the Data Set Information dialog (accessed via
the Data menu) to display information about your plt file (once it is loaded into
Tecplot). Refer to this dialog for a list of the zones, variables, variable ranges,
auxiliary data and more. Refer to Section 6 - 3 “Data Set Information” on page 174 in
the User’s Manual for details.

• Data Spreadsheet - Use the Data Spreadsheet to view a table of every variable value in
your file. Refer to Section 20 - 12 “Data Spreadsheet” in the User’s Manual for
details.
10

Binary Function Notes
2 - 3 Binary Function Notes

2- 3.1 Deprecated Binary Functions
Functions that end in 110 or less are deprecated. We recommend you use the 111 binary function
family.

The following functions were altered during the upgrade to the 111 family:

• TECINI - The FileType parameter was added TECINI. Files from previous versions
are of type “FULL”. See Section “TECINI111” on page 29 for additional
information.

• TECZNE - Three parameters, TotalNumFaceNodes, NumConnectedBoundaryFaces
and TotalNumBoundaryConnections were added to TECZNE111. Refer to Section
“TECZNE111” on page 42 for details.

If you update existing binary function calls to use version 111, you will need to update all of your
binary calls.

2- 3.2 Character Strings in FORTRAN
All character string parameters in FORTRAN must terminate with a null character. This is done by
concatenating char(0) to the end of a character string.

For example, to send the character string “Hi Mom” to a function called A, use the following
syntax:

I=A("Hi Mom"//char(0))

The *.plt file that you create will be compatible with the ver-
sion of Tecplot tied to the version of the TecIO library that
you use. For example, if you use the TecIO library that was
bundled with Tecplot 360 Version 2006, your files can be
loaded with Tecplot 360 Version 2006 and newer.

This is independent of the version number used for the binary functions
(e.g. the 111 in TECZNE111). For example, even if you use 110 functions
with the version of the TecIO library included with this distribution, your
plt file will be compatible with this version of Tecplot and newer.
11

Binary Data
2- 3.3 Boolean Flags
Integer parameters identified as "flags" indicate boolean values. Pass 1 for true, and 0 for false.

2 - 4 Binary Data File Function Calling Sequence
For a given file, the binary data file functions must be called in a specific order.

The order is as follows:

TECFOREIGN111 (Optional)
TECINI111

For each call to TECINI111, use one or more of the following commands:
TECAUXSTR111 (Optional)
TECVAUXSTR111 (Optional)
TECZNE111 (One or more to create multiple zones)

For each call to TECZNE111, use one of more of these commands:
TECDAT111 (One or more to fill each zone)
TECNOD111 (One for each finite-element zone)
TECFACE111 (One for each zone with face connections)
TECPOLY111 (Optional - use for polyhedral data)
TECZAUXSTR111 (Optional)

TECLAB111 (Optional)
TECGEO111 (Optional)
TECTXT111 (Optional)

TECFIL111 (Optional - use if you are switching between files)
TECUSR111 (Optional)
TECEND111

Section 2 - 5 “Writing to Multiple Binary Data Files” explains how you can use the TECFIL111
function along with the above functions to write to multiple files simultaneously.

2 - 5 Writing to Multiple Binary Data Files
Each time TECINI111 is called it sets up a new file “context.” For each file context you must
maintain the order of the calls as described in the previous section. The TECFIL111 function is
used to switch between file contexts. Up to 10 files can be written to at a time. TECFIL111 can be
called almost anywhere after TECINI111 has been called. The only parameter to TECFIL111, an
12

Linking with the TecIO Library
integer, n, shifts the file context to the nth open file. The files are numbered relative to the order of
the calls to TECINI111.

2 - 6 Linking with the TecIO Library
To output data in Tecplot’s binary format, you may write your own functions or use the library pro-
vided with your installation. On Windows platforms, tecio.lib is installed in the bin directory of
your Tecplot 360 installation.1 On UNIX, Linux, Macintosh platforms, tecio.a is installed in the lib
directory of your Tecplot 360 installation. Follow the instructions below to link with Tecplot’s
library.

2- 6.1 UNIX/Linux/Macintosh:
NOTE: Some f90 compilers do not accept the f90 file extension. You may need to rename the files
and edit the Make script to build these examples.

1. Verify that tecio.a is located in the lib directory below the Tecplot home directory.

2. Set your $TEC_360_2008 environment variable to the Tecplot home directory.

3. Run Make. (Capital M)

2- 6.2 Windows:
NOTE: Only the .c and .f90 source files are used on Windows operating systems.

To link with the TecIO library, perform the following steps:

1. On Windows platforms, you will need to include tecio.dll in any distributions you create. Tecio.dll is provided in
$TEC_360_2008/bin along with tecio.lib.

The *.plt file that you create will be compatible with the ver-
sion of Tecplot tied to the version of the TecIO library that
you use. For example, if you use the TecIO library that was
bundled with Tecplot 360 Version 2006, your files can be
loaded with Tecplot 360 Version 2006 and newer.

This is independent of the version number used for the binary functions
(e.g. the 111 in TECZNE111). For example, even if you use 110 functions
with the version of the TecIO library included with this distribution, your
plt file will be compatible with this version of Tecplot and newer.
13

TECAUXSTR111
1. Create a development project

2. List $($TEC_360_2008)/bin/tecio.lib as an additional dependency. In Visual Studio®
2005, this is accomplished via: Configuration Properties>Linker>Input in the Project
Properties dialog.

3. Include the TecIO header files (TECIO.h and TECXXX.h), located in:
$TEC_360_2008/Include.

Notes for Windows Programmers using Fortran:
The included project files were developed and tested with Compaq Visual Fortran version 6.6. File
tecio.f90 contains both Fortran-90 interfaces for all TecIO functions and some compiler-specific
directives (the !MS$ATTRIBUTES lines) to direct Visual Fortran to use STDCALL calling con-
ventions with by-reference parameter passing.

Users of other compilers may need to adjust the Fortran settings or add other compiler directives to
achieve the same effect. In particular, Fortran strings must be NULL-terminated and passed without
a length argument.

2 - 7 Binary Data File Function Reference
This section describes each of the TecIO functions in detail.

TECAUXSTR111

Writes auxiliary data for the data set to the data file. The function may be called any time between
TECINI111 and TECEND111. Auxiliary data may be used by text, macros, equations (if it is
numeric) and add-ons. It may be viewed directly in the Aux Data page of the Data Set Information
dialog (accessed via the Data menu).

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECAUXSTR111(Name,
& Value)
 CHARACTER*(*) Name
 CHARACTER*(*) Value

C Syntax:
#include TECIO.h
14

TECDAT111
INTEGER4 TECAUXSTR111(char *Name,
char *Value)

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

Example
For example, to set an Auxiliary Variable called DeformationValue to 0.98:

char DeformationValue[128];
strcpy(DeformationValue,"0.98");

TECAUXSTR111("DeformationValue",
 DeformationValue);

When the data file is loaded into Tecplot, “Deformation Value” will appear on the Aux Page of the
Data Set Information dialog when “for Data Set” is selected in Show Auxiliary Data menu.

TECDAT111

Writes an array of data to the data file. Data should not be passed for variables that have been indi-
cated as passive or shared (via TECZNE111).

TECDAT111 allows you to write your data in a piecemeal fashion in case it is not contained in one
contiguous block in your program. TECDAT111 must be called enough times to ensure that the
correct number of values are written for each zone and that the aggregate order for the data is cor-
rect.

Parameter Description

Name
The name of the auxiliary data. If this duplicates an existing name, the value will
overwrite the existing value. NOTE: It must be a null-terminated character string
and cannot contain spaces.

Value The value to assign to the named auxiliary data. NOTE: It must be a null-termi-
nated character string.
15

TECDAT111
In the above summary, NumVars is based on the number of variable names supplied in a previous
call to TECINI111.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECDAT111(N,
& Data,
& IsDouble)
 INTEGER*4 N
 REAL or DOUBLE PRECISION Data(1)
 INTEGER*4 IsDouble

C Syntax:
#include TECIO.h
INTEGER4 TECDAT111(INTEGER4 *N,

void *Data,
INTEGER4 *IsDouble);

Return Value:
0 if successful, -1 if unsuccessful.
16

TECDAT111
Parameters:

Data Arrangement
The following table describes the order the data must be supplied given different zone types
(IsBlock and VarLocation are parameters supplied to TECZNE111):

Parameter Description

N Pointer to an integer value specifying number of values to write.

Data Array of single or double precision data values. Refer to Table 2 - 1 for a description
of how to arrange your data.

IsDouble Pointer to the integer flag stating whether the array Data is single (0) or double (1)
precision.

Table 2 - 1: Data Arrangement

Zone
Type

Var.
Loca-
tion

IsBlock Number of
Values

Order

Ordered Nodal 1

IMax*
JMax*
KMax*
NumVars

I varies fastest, then J, then K, then Vars.
That is, the numbers should be supplied in
the following order:
 for (Var=1;Var<=NumVars;Var++)
 for (K=1;K<=KMax;K++)
 for (J=1;J<=JMax;J++)
 for (I=1;I<=IMax;I++)
 Data[I, J, K, Var] = value;

Ordered Nodal 0

IMax*
JMax*
KMax*
NumVars

Vars varies fastest, then I, then J, then K.
That is, the numbers should be supplied in
the following order:
 for (K=1;K<=KMax;K++)
 for (J=1;J<=JMax;J++)
 for (I=1;I<=IMax;I++)
 for(Var=1;Var<=NumVars;Var++)
 Data[Var, I, J, K] = value;
17

TECDAT111
Example
Refer to the following examples in Section 2 - 9 “Examples” for examples using TECDAT111:

• Section 2- 9.1 “Face Neighbors”

• Section 2- 9.2 “Polygonal Example”

Ordered Cell
Centered 1a

(IMax-1)*
(JMax-1)*
(KMax-1)*
NumVars

I varies fastest, then J, then K, then Vars.
That is, the numbers should be supplied in
the following order:
 for (Var=1;Var<=NumVars;Var++)
 for (K=1;K<=(KMax-1);K++)
 for (J=1;J<=(JMax-1);J++)
 for (I=1;I<=(IMax-1);I++)
 Data[I, J, K, Var] = value;

Finite-
element Nodal 1

IMax (i.e.
NumNodes) *
NumVars

N varies fastest, then Vars. That is, the
numbers should be supplied in the following
order:
 for (Var=1;Var<=NumVars;Var++)
 for (N=1;N<=NumNodes;N++)
 Data[N, Var] = value;

Finite-
element Nodal 0

IMax (i.e.
NumNodes) *
NumVars

Vars varies fastest, then N. That is, the
numbers should be supplied in the following
order:
 for (N=1;N<=NumNodes;N++)
 for (Var=1;Var<=NumVars;Var++)
 Data[Var, N] = value;

Finite-
element

Cell
Centered 1a

JMax (i.e.
NumElements)
* NumVars

E varies fastest, then Var. That is, the num-
bers should be supplied in the following
order:
 for (Var=1;Var<=NumVars;Var++)
 for (E=1;E<=NumElements;E++)
 Data[E, Var] = value;

a. Cell-centered data must be supplied in block format (i.e. IsBlock = 1 for all cell-centered data).

Table 2 - 1: Data Arrangement

Zone
Type

Var.
Loca-
tion

IsBlock Number of
Values

Order
18

TECEND111
• Section 2- 9.3 “Multiple Polyhedral Zones”

• Section 2- 9.4 “Multiple Polygonal Zones”

• Section 2- 9.5 “Polyhedral Example”

• Section 2- 9.6 “IJ-ordered zone”

TECEND111

Must be called to close out the current data file. There must be one call to TECEND111 for each
TECINI111.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECEND111()

C Syntax:
#include TECIO.h
INTEGER4 TECEND111();

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:
None.

TECFACE111

Writes face connections for the current zone to the file. Face Neighbor Connections are used for
ordered or cell-based finite-element zones to specify connections that are not explicitly defined by
the connectivity list or ordered zone structure. You many use face neighbors to specify connections
between zones (global connections) or connections within zones (local connections). Face neigh-
bor connections are used by Tecplot when deriving variables or drawing contour lines. Specifying
face neighbors, typically leads to smoother connections. NOTE: face neighbors have expensive
performance implications. Use face neighbors only to manually specify connections that are not
defined via the connectivity list.
19

TECFACE111
This function must be called after TECNOD111, and may only be called if a non-zero value of
NumFaceConnections was used in the previous call to TECZNE111.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECFACE111(FaceConnections)
INTEGER*4 FACECONNECTIONS(*)

C Syntax:
#include TECIO.h
INTEGER4 TECFACE111(INTEGER4 *FaceConnections);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

Where:

cz = cell in current zone

fz = face of cell in current zone

oz = face obscuration flag (only applies to one-to-many):

Parameter Description

FaceConnec-
tions

The array that specifies the face connections. The array must have L values,
where L is the sum of the number of values for each face neighbor connection in
the data file. The number of values in a face neighbor connection is dependent
upon the FaceNeighborMode parameter (set via TECZNE111) and is described
in the following table.

FaceNeighbor Mode Number of
values

Data

LocalOneToOne 3 cz1,fz,cz2
LocalOneToMany nz+4 cz1,fz,oz,nz,cz2,cz3,...,czn
GlobalOneToOne 4 cz, fz, ZZ, CZ
GlobalOneToMany 2*nz+4 cz, fz, oz, nz, ZZ1, CZ1, ZZ2, CZ2, ...,ZZn, CZn
20

TECFIL111
0 = face partially obscured

1 = face entirely obscured

nz = number of cell or zone/cell associations (only applies to one-to-many)

ZZ = remote Zone

CZ = cell in remote zone

cz,fz combinations must be unique. Additionally, Tecplot 360 assumes that with the one-to-one
face neighbor modes a supplied cell face is entirely obscured by its neighbor. With one-to-many,
the obscuration flag must be supplied. Faces that are not supplied with neighbors are run through
Tecplot 360’s auto face neighbor generator (FE only).

The face numbers for cells in the various zone types are defined in Figure 2-1.

Example
Refer to Section 2- 9.1 “Face Neighbors” for an example of working with face neighbors. In this
example, face neighbors are used to prevent an Edge line from being drawn between the two zones.

TECFIL111

Switch output context to a different file. Each time TECINI111 is called the file context is switched
to a different file. This allows you to write multiple data files at the same time. When working with

f1

f2
f3f4

Figure 2-1. A: Example of node and face neighbors for an fe-brick cell or IJK-ordered cell.
B: Example of node and face numbering for an IJ-ordered cell. C: example of
tetrahedron face neighbors.

A B C
21

TECFOREIGN111
multiple files, be sure to call TECFIL111 each time you wish to write to a file. This will ensure
your data is written to the appropriate file.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECFIL111(F)
INTEGER*4 F

C Syntax:
#include TECIO.h
INTEGER4 TECFIL111(INTEGER4 *F);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

Examples
Refer to Section 2- 9.7 “Switching between two files” for a simple example of working with
TECFIL111.

TECFOREIGN111

Optional function that sets the byte ordering request for subsequent calls to TECINI111. The byte
ordering request will remain in effect until the next call to this function. This has no effect on files
already opened via TECINI111. Use this function to reverse the byte ordering from the format
native to your operating system. For example, this is useful if you are creating a file on an SGI
machine to be used on a Windows or Intel-based Linux machine. If the function call is omitted,
native byte ordering will be used.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECFOREIGN111(DoForeignByteOrder)

Parameter Description

F Pointer to integer specifying file number to switch to. A value of 1 indicates a switch to
the file opened by the first call to TECINI111.
22

TECGEO111
INTEGER*4 DoForeignByteOrder

C Syntax:
#include TECIO.h
INTEGER4 TECFOREIGN111(INTEGER4 *DoForeignByteOrder);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

TECGEO111

Adds a geometry object to the file (e.g. a circle or a square). NOTE: you cannot set unused param-
eters to NULL. You must use dummy values for unused parameters.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECGEO111(XOrThetaPos,
& YOrRPos,
& ZPos,
& PosCoordMode,
& AttachToZone,
& Zone,
& Color,
& FillColor,
& IsFilled,
& GeomType,
& LinePattern,
& PatternLength,
& LineThickness,
& NumEllipsePts,
& ArrowheadStyle,

Parameter Description

DoForeignByteOr-
der

Pointer to boolean value indicating if future files created by TECINI111
should be written out in foreign byte order. 0 indicates native byte order.
1 indicates foreign byte order.
23

TECGEO111
& ArrowheadAttachment,
& ArrowheadSize,
& ArrowheadAngle,
& Scope,
& Clipping,
& NumSegments,
& NumSegPts,
& XOrThetaGeomData,
& YOrRGeomData,
& ZGeomData,
& MFC)
 DOUBLE PRECISION XOrThetaPos
 DOUBLE PRECISION YOrRPos
 DOUBLE PRECISION ZPos
 INTEGER*4 PosCoordMode
 INTEGER*4 AttachToZone
 INTEGER*4 Zone
 INTEGER*4 Color
 INTEGER*4 FillColor
 INTEGER*4 IsFilled
 INTEGER*4 GeomType
 INTEGER*4 LinePattern
 DOUBLE PRECISION PatternLength
 DOUBLE PRECISION LineThickness
 INTEGER*4 NumEllipsePts
 INTEGER*4 ArrowheadStyle
 INTEGER*4 ArrowheadAttachment
 DOUBLE PRECISION ArrowheadSize
 DOUBLE PRECISION ArrowheadAngle
 INTEGER*4 Scope
 INTEGER*4 Clipping
 INTEGER*4 NumSegments
 INTEGER*4 NumSegPts
 REAL*4 XOrThetaGeomData
 REAL*4 YOrRGeomData
 REAL*4 ZGeomData
 CHARACTER*(*) MFC

C Syntax:
#include TECIO.h
INTEGER4 TECGEO111(double *XOrThetaPos,
24

TECGEO111
double *YOrRPos,
double *ZPos,
INTEGER4 *PosCoordMode,
INTEGER4 *AttachToZone,
INTEGER4 *Zone,
INTEGER4 *Color,
INTEGER4 *FillColor,
INTEGER4 *IsFilled,
INTEGER4 *GeomType,
INTEGER4 *LinePattern,
double *PatternLength,
double *LineThickness,
INTEGER4 *NumEllipsePts,
INTEGER4 *ArrowheadStyle,
INTEGER4 *ArrowheadAttachment,
double *ArrowheadSize,
double *ArrowheadAngle,
INTEGER4 *Scope,
INTEGER4 *Clipping,
INTEGER4 *NumSegments,
INTEGER4 *NumSegPts,
float *XOrThetaGeomData,
float *YOrRGeomData,
float *ZGeomData,
char *MFC

Return Value:
0 if successful, -1 if unsuccessful.
25

TECGEO111
Parameters:

Parameter Description

XOrThetaPos Pointer to double value specifying the X- position or, for polar line plots,
the Theta-position of the geometry.

YOrRPos Pointer to double value specifying the Y-position or, for polar line plots,
the R-position of the geometry.

ZPos Pointer to double value specifying the Z-position of the geometry.

PosCoordMode

Pointer to integer value specifying the position coordinate system.
0=Grid
1=Frame
6=Grid3D

Grid3D is available only when the GeomType is equal to 3D Line Seg-
ments.

AttachToZone

Pointer to integer flag to signal that the geometry is “attached” to a zone.
When a geometry is attached to a zone, it will be visible only when that
zone is visible.

1 = Yes 0 = No

Zone Pointer to integer value specifying the number of the zone to attach to.
Must be greater than or equal to one.

Color

Pointer to integer value specifying the color to assign to the geometry.
0=Black 8=Custom1
1=Red 9=Custom2
2=Green 10=Custom3
3=Blue 11=Custom4
4=Cyan 12=Custom5
5=Yellow 13=Custom6
6=Purple 14=Custom7
7=White 15=Custom8

FillColor Pointer to integer value specifying the color used to fill the geometry.
Refer to Color for a list of available values.

IsFilled
Pointer to integer flag to specify if geometry is to be filled.

1 = Yes 0 = No
26

TECGEO111
GeomType

Pointer to integer value specifying the geometry type.
0=2D Line Segments 3=Circle
1=Rectangle 4=Ellipse
2=Square 5=3D Line Segments

LinePattern

Pointer to integer value specifying the line pattern.
0=Solid 3=Dotted
1=Dashed 4=LongDash
2=DashDot 5=DashDotDot

PatternLength Pointer to double value specifying the pattern length in frame units (from
0 to 100).

LineThickness Pointer to double value specifying the line thickness in frame units. The
value must be greater than zero and less than 100.

NumEllipsePts Pointer to integer value specifying the number of points to use for circles
and ellipses. The value must be between 2 and 720.

ArrowheadStyle
Pointer to integer value specifying the arrowhead style.

0=Plain 2=Hollow
1=Filled

ArrowheadAttachment
Pointer to integer value specifying where to attach arrowheads.

0=None 2=End
1=Beginning 3=Both

ArrowheadSize Pointer to double value specifying the arrowhead size in frame units
(from 0 to 100).

ArrowheadAngle Pointer to double value specifying the arrowhead angle in degrees.

Scope

Pointer to integer value specifying the scope with respect to frames. A
local scope places the object in the current frame. A global scope places
the object in all frames that contain the current frame’s data set.

0=Global 1=Local.

Clipping
Specifies whether to clip the geometry (that is, only plot the geometry
within) to the viewport or the frame.

0=ClipToViewport 1=ClipToFrame.

NumSegments Pointer to integer value specifying the number of polyline segments.

NumSegPts Array of integer values specifying the number of points in each of the
NumSegments segments.

Parameter Description
27

TECGEO111
Examples

Refer to Section 2- 9.9 “Geometry Example” for a simple example of working with TECGEO111.

Origin positions
The origin (XOrThetaPos, YOrRPos, ZPos) of each geometry type is listed below:

• SQUARE - lower left corner at XOrThetaPos, YOrRPos.

• RECTANGLE - lower left corner at XOrThetaPos, YOrRPos.

• CIRCLE - centered at XOrThetaPos, YOrRPos.

• ELLIPSE - centered at XOrThetaPos, YOrRPos.

• LINE - anchored at XOrThetaPos, YOrRPos.

• LINE3D - anchored at XOrThetaPos, YOrRPos, ZPos.

Data Values
The origin (XOrThetaGeomData, YOrRGeomData, ZGeomData) of each geometry type is listed
below:

• SQUARE - set XOrThetaGeomData equal to the desired length.

• RECTANGLE - set XOrThetaGeomData equal to the desired width and
YOrThetaGeomData equal to the desired height.

• CIRCLE - set XOrThetaGeomData equal to the desired radius.

XOrThetaGeomData
Array of floating-point values specifying the X-, Y- and Z-coordinates.
Refer to “Data Values” on page 28 for information regarding the values
required for each GeomType.

YOrRGeomData

ZGeomData

MFC Macro function command. Must be null terminated.

Parameter Description
28

TECINI111
• ELLIPSE - set XOrThetaGeomData equal to the desired width along the x-axis and
YOrThetaGeomData equal to the desired width along the y-axis.

• LINE - specify the coordinate positions for the data points in each line segment with
XOrThetaGeomData and YOrRGeomData.

• LINE3D - specify the coordinate positions for the data points in each line segment
with XOrThetaGeomData, YOrRGeomData and ZGeomData.

TECINI111

Initializes the process of writing a binary data file. This must be called first before any other TecIO
calls are made (except TECFOREIGN111). You may write to multiple files by calling TECINI111
more than once. Each time TECINI111 is called, a new file is opened. Use TECFIL111 to switch
between files. For each call to TECINI, there must be a corresponding call to TECEND111.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECINI111(Title,
& Variables,
& FName,
& ScratchDir,
& FileType,
& Debug,
& VIsDouble)
CHARACTER*(*) Title
CHARACTER*(*) Variables
CHARACTER*(*) ScratchDir
CHARACTER*(*) FName
INTEGER*4 FileType
INTEGER*4 Debug
INTEGER*4 VIsDouble

C Syntax:
#include TECIO.h
INTEGER4 TECINI111(char *Title,

char *Variables,
char *FName,
char *ScratchDir,
INTEGER4 *FileType,
29

TECLAB111
INTEGER4 *Debug
INTEGER4 *VIsDouble);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

Examples
Each example in Section 2 - 9 “Examples” calls TECINI111 at least once. Refer to this section for
details.

TECLAB111

Adds custom labels to the data file. Custom Labels can be used for axis labels, legend text, and
tick mark labels. The first custom label string corresponds to a value of one on the axis, the next to
a value of two, the next to a value of three, and so forth. NOTE: To work with custom labels, you
must have at least one zone in your data set. A custom label set is added to your file each time you

Parameter Description

Title Title of the data set. Must be null terminated.

Variables List of variable names. If a comma appears in the string it will be used as the separa-
tor between variable names, otherwise a space is used. Must be null terminated.

FName Name of the file to create. Must be null terminated.

ScratchDir Name of the directory to put the scratch file. Must be null terminated.

FileType

Specify whether the file is a full data file (containing both grid and solution data), a
grid file or a solution file.

0=Full
1=Grid 2=Solution

Debug Pointer to the integer flag for debugging. Set to 0 for no debugging or 1 to debug.
When set to 1, the debug messages will be sent to the standard output (stdout).

VIsDouble
Pointer to the integer flag for specifying whether field data generated in future calls
to TECDAT111 are to be written in single or double precision.

0=Single 1=Double.
30

TECNOD111
call TECLAB111. You may have up to sixty labels in a set and up to ten sets in a file. Each label
must be surrounded by double-quotes, e.g. “Mon” “Tues” “Wed”, etc.

Custom labels are assigned to an object via the Tecplot interface. Refer to Section 18- 6.1 “Using
Custom Labels” in the User’s Manual for details.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECLAB111(Labels)
CHARACTER*(*) Labels

C Syntax:
#include TECIO.h
INTEGER4 TECLAB111(char *Labels);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

Examples
To add the days of the week to your data file, to be displayed along the x-axis:

char Labels[60] = "\"Mon\", \"Tues\",\"Wed\",\"Thurs\", \”Fri\”";
TECLAB111(&Labels[0]);

TECNOD111

Writes an array of node data to the binary data file. This is the connectivity list for cell-based finite-
element zones (line segment, triangle, quadrilateral, brick, and tetrahedral zones). The connectivity
list for face-based finite-element zones (polygonal and polyhedral) is specified via TECPOLY111.

Parameter Description

Labels
Character string of custom labels. Each label must be surrounded by double-quotes.
Separate labels by a comma or space. You may have up to sixty labels in each call to
TECLAB111.
31

TECPOLY111
FORTRAN Syntax:
INTEGER*4 FUNCTION TECNOD111(NData)
INTEGER*4 NData (T, M)

C Syntax:
#include TECIO.h
INTEGER4 TECNOD111(INTEGER4 *NData);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

Examples:
Refer to Section 2- 9.1 “Face Neighbors” for examples using TECNOD111.

TECPOLY111

Writes the face map for polygonal and polyhedral zones to the data file. All numbering schemes are
one-based. That is, the first node is Node 1, the first face is Face 1, and so forth. Refer to Section 2
- 8 “Defining Polyhedral and Polygonal Data” on page 48 for additional information.

NOTE: Avoid creating concave objects (or bad meshes), as they will not look good when plotted.

FORTRAN syntax:
 INTEGER*4 FUNCTION TECPOLY111(
& FaceNodeCounts,

Parameter Description

NData

Array of integers listing the nodes for each element. This is the connectivity list,
dimensioned (T, M) (T moving fastest), where M is the number of elements in the
zone and T is set according to the following list:

2=Line Segment 4=Tetrahedral
3=Triangle 8=Brick
4=Quadrilateral
32

TECPOLY111
& FaceNodes,
& FaceLeftElems,
& FaceRightElems,
& FaceBndryConnectionCounts,
& FaceBndryConnectionElems,
& FaceBndryConnectionZones)
 INTEGER*4 FaceNodeCounts(*)
 INTEGER*4 FaceNodes(*)
 INTEGER*4 FaceLeftElems(*)
 INTEGER*4 FaceRightElems(*)
 INTEGER*4 FaceBndryConnectionCounts(*)
 INTEGER*4 FaceBndryConnectionElems(*)
 INTEGER*2 FaceBndryConnectionZones(*)

C Syntax:
include TECIO.h
INTEGER4 TECPOLY111(INTEGER4 *FaceNodeCounts,
 INTEGER4 *FaceNodes,
 INTEGER4 *FaceLeftElems,
 INTEGER4 *FaceRightElems,
 INTEGER4 *FaceBndryConnectionCounts,
 INTEGER4 *FaceBndryConnectionElems,
 INTEGER2 *FaceBndryConnectionZones);

Return Value:
0 if successful, -1 if unsuccessful.
33

TECPOLY111
Parameters:

Examples
Refer to the following sections for examples using TECPOLY111:

• Section 2- 9.2 “Polygonal Example”

• Section 2- 9.3 “Multiple Polyhedral Zones”

• Section 2- 9.4 “Multiple Polygonal Zones”

• Section 2- 9.5 “Polyhedral Example”

Parameter Description

FaceNodeCounts

An array used to define the number of nodes in each face. The
array is dimensioned by the number of faces (defined in
TECZNE111) . This is NULL for polygonal zones, as each face in
a polygonal zone has exactly two nodes.

FaceNodes
An array used to specify which nodes belong to which face. The
array is dimensioned by TotalNumFaceNodes (defined in
TECZNE111) .

FaceLeftElems
An array used to define the left neighboring element for each
face. The array is dimensioned by NumFaces (defined in
TECZNE111) .

FaceRightElems
An array used to define the right neighboring element for each
face. The array is dimensioned by NumFaces (defined in
TECZNE111) .

FaceBndryConnection-
Counts

An array used to define the number of boundary connections for
each boundary face. The array is dimensioned by TotalNumBn-
dryFaces (defined in TECZNE111) .

FaceBndryConnectionElems
An array used to define the boundary element(s) to which each
boundary face is connected. The array is dimensioned by Total-
NumBndryConnections (defined in TECZNE111) .

FaceBndryConnectionZones
An array used to define the zone(s) to which each boundary ele-
ment belongs. The array is dimensioned by TotalNumBndry-
Connections (defined in TECZNE111) .
34

TECTXT111
TECTXT111

Adds a text box to the file.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECTXT111(XOrThetaPos,
& YOrRPos,
& ZOrUnusedPos,
& PosCoordMode,&
& AttachToZone,
& Zone,
& Font,
& FontHeightUnits,
& FontHeight,
& BoxType,
& BoxMargin,
& BoxLineThickness,
& BoxColor,
& BoxFillColor,
& Angle,
& Anchor,
& LineSpacing,
& TextColor,
& Scope,
& Clipping,
& Text,
& MFC)
 DOUBLE PRECISION XOrThetaPos
 DOUBLE PRECISION YOrRPos
 DOUBLE PRECISION ZOrUnusedPos
 INTEGER*4 PosCoordMode
 INTEGER*4 AttachToZone
 INTEGER*4 Zone
 INTEGER*4 Font
 INTEGER*4 FontHeightUnits
 DOUBLE PRECISION FontHeight
 INTEGER*4 BoxType
 DOUBLE PRECISION BoxMargin
 DOUBLE PRECISION BoxLineThickness
 INTEGER*4 BoxColor
 INTEGER*4 BoxFillColor
35

TECTXT111
 DOUBLE PRECISION Angle
 INTEGER*4 Anchor
 DOUBLE PRECISION LineSpacing
 INTEGER*4 TextColor
 INTEGER*4 Scope
 INTEGER*4 Clipping
 CHARACTER*(*) Text
 CHARACTER*(*) MFC

C Syntax:
#include TECIO.h
INTEGER4 TECTXT111(double *XOrThetaPos,

double *YOrRPosPos,
double *ZOrUnusedPos,
INTEGER4 *PosCoordMode,
INTEGER4 *AttachToZone,
INTEGER4 *Zone,
INTEGER4 *Font,
INTEGER4 *FontHeightUnits,
double *FontHeight,
INTEGER4 *BoxType,
double *BoxMargin,
double *BoxLineThickness,
INTEGER4 *BoxColor,
INTEGER4 *BoxFillColor,
double *Angle,
INTEGER4 *Anchor,
double *LineSpacing,
INTEGER4 *TextColor,
INTEGER4 *Scope,
INTEGER4 *Clipping,
char *Text,
char *MFC)

Return Value:
 0 if successful, -1 if unsuccessful.
36

TECTXT111
Parameters:

Parameter Description

XOrThetaPos Pointer to double value specifying the X-position or Theta-position (polar
plots only) of the text.

YOrRPos Pointer to double value specifying the Y-position or R-position (polar plots
only) of the text.

ZOrUnusedPos Pointer to double value specifying the Z-position of the text.

PosCoordMode

Pointer to integer value specifying the position coordinate system.
0=Grid
1=Frame
6=Grid3D

If you use Grid3D, the plot type must be set to 3D Cartesian to view your
text box.

AttachToZone Pointer to integer flag to signal that the text is “attached” to a zone.

Zone Pointer to integer value specifying the zone number to attach to.

Font

Pointer to integer value specifying the font.
0=Helvetica 6=Times Italic
1=Helvetica Bold 7=Times Bold
2=Greek 8=Times Italic Bold
3=Math 9=Courier
4=User-Defined 10=Courier Bold
5=Times

FontHeightUnits
Pointer to integer value specifying the font height units.

0=Grid 2=Point
1=Frame

FontHeight Pointer to double value specifying the font height. If PosCoordMode is set to
FRAME, the value range is zero to 100.

BoxType
Pointer to integer value specifying the box type.

0=None 2=Hollow
1=Filled

BoxMargin Pointer to double value specifying the box margin (in frame units ranging
from 0 to 100).
37

TECTXT111
BoxLineThickness Pointer to double value specifying the box line thickness (in frame units
ranging from 0 to 100).

BoxColor

 Pointer to integer value specifying the color to assign to the box.
0=Black 8=Custom1
1=Red 9=Custom2
2=Green 10=Custom3
3=Blue 11=Custom4
4=Cyan 12=Custom5
5=Yellow 13=Custom6
6=Purple 14=Custom7
7=White 15=Custom8

BoxFillColor Pointer to integer value specifying the fill color to assign to the box. (See
BoxColor)

Angle Pointer to double value specifying the text angle in degrees.

Anchor

 Pointer to integer value specifying where to anchor the text.
0=Left 5=MidRight
1=Center 6=HeadLeft
2=Right 7=HeadCenter
3=MidLeft 8=HeadRight
4=MidCenter

LineSpacing Pointer to double value specifying the text line spacing.

TextColor Pointer to integer value specifying the color to assign to the text. (See Box-
Color)

Scope

Pointer to integer value specifying the scope with respect to frames. A local
scope places the object in the current frame. A global scope places the
object in all frames that contain the current frame’s data set.

0=Global 1=Local

Clipping
Specifies whether to clip the geometry (that is, only plot the geometry
within) to the viewport or the frame.

 0=ClipToViewport 1=ClipToFrame.

Text Character string representing text to display. Must be null terminated.

MFC Macro function command. Must be null terminated.

Parameter Description
38

TECUSR111
Examples
Refer to Section 2- 9.8 “Text Example” for an example of working with TECTXT111.

TECUSR111

Writes a character string to the data file in a USERREC record. USERREC records are ignored by
Tecplot 360, but may be used by add-ons.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECUSR111(S)
CHARACTER*(*) S

C Syntax:
#include TECIO.h
INTEGER4 TECUSR111(CHAR *S);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

TECVAUXSTR111

Writes an auxiliary data item to the data file for the specified variable. Must be called after
TECINI111 and before TECEND111. Auxiliary data may be used by text, macros, equations (if it
is numeric) and add-ons. It may be viewed directly in the Aux Data page of the Data Set Information
dialog (accessed via the Data menu). The value can be verified by selecting “Variable” from the
“Show Auxiliary Data” menu and selecting the corresponding variable number from the menu.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECVAUXSTR111(Var, Name, Value)

Parameter Description

S The character string to write to the data file. Must be null-terminated.
39

TECVAUXSTR111
INTEGER*4 Var
CHARACTER*(*) Name
CHARACTER*(*) Value

C Syntax:
#include TECIO.h
INTEGER4 TECAUXSTR111(INTEGER4 *Var,
 char *Name,
 char *Value);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

Example:
The following example illustrates adding auxiliary data to the pressure variable in the data file. In
this case, pressure is the third variable.

 INTEGER4 Var = 3;
 char PressureUnitsName[16] = "PressureUnits";
 char PressureUnitsValue[16] = "Pascal (Pa)";

 TECVAUXSTR111(&Var,
 &PressureUnitsName[0],
 &PressureUnitsValue[0]);

Parameter Description

Var The variable number for which to set the auxiliary data. Variable numbers
start at one.

Name
The name of the auxiliary data item. If a data item with this name already
exists, its value will be overwritten. Must be a null-terminated character string
and cannot contain spaces.

Value The auxiliary data value to be written to the data file. Must be a null-termi-
nated character string.
40

TECZAUXSTR111
TECZAUXSTR111

Writes an auxiliary data item for the current zone to the data file. Must be called immediately after
TECZNE111 for the desired zone. Auxiliary data may be used by text, macros, equations (if it is
numeric) and add-ons. It may be viewed directly in the Aux Data page of the Data Set Information
dialog (accessed via the Data menu). The value can be verified by selecting “Zone” from the
“Show Auxiliary Data” menu and selecting the corresponding zone number.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECZAUXSTR111(Name, Value)
CHARACTER*(*) Name
CHARACTER*(*) Value

C Syntax:
#include TECIO.h
INTEGER4 TECZAUXSTR111(char *Name,
 char *Value);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

Example:
The following example code adds auxiliary data to the zone. NOTE: TECZAUXSTR111 must be
called immediately after TECZNE111 for the desired zone.

char CreatedByName[16] = "CreatedBy";
char CreatedByValue[16] = "My Company";

Parameter Description

Name The name of the auxiliary data item. If a data item with this name already exists, its
value will be overwritten. Must be a null-terminated character string and cannot con-
tain spaces.

Value The auxiliary data value to be written to the data file. Must be a null-terminated
character string.
41

TECZNE111
TECZAUXSTR111(&CreatedByName[0],
 &CreatedByValue[0]);

TECZNE111

Writes header information about the next zone to be added to the data file. After TECZNE111 is
called, you must call TECDAT111 one or more times. If the zone is a finite-element zone, call
TECNOD111 (cell-based zones) or TECPOLY111 (face-based zones) after calling TECDAT111.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECZNE111(ZoneTitle,
& ZoneType,
& IMxOrNumPts,
& JMxOrNumElements,
& KMxOrNumFaces,
& ICellMax,
& JCellMax,
& KCellMax,
& SolutionTime,
& StrandID,
& ParentZone,
& IsBlock,
& NumFaceConnections,
& FaceNeighborMode,
& TotalNumFaceNodes,
& NumConnectedBoundaryFaces,
& TotalNumBoundaryConnections,

ZoneType, please note that some features in
Tecplot 360are limited by zone type. For
example, iso-surfaces and slices are avail-
able for 3D zones types only (FETETRA-

HEDRON, FEBRICK, FEPOLYHEDRON and
ORDERED - with K greater than 1).

However, the plot type that you specify (in Tecplot 360
once you have loaded your data) is not limited by your
zone type. You may have a 3D zone displayed in a 2D
Cartesian plot (and visa versa).
42

TECZNE111
& PassiveVarList,
& ValueLocation,
& ShareVarFromZone,
& ShareConnectivityFromZone)
 CHARACTER*(*) ZoneTitle
 INTEGER*4 ZoneType
 INTEGER*4 IMxOrNumPts
 INTEGER*4 JMxOrNumElements
 INTEGER*4 KMxOrNumFaces
 INTEGER*4 ICellMax
 INTEGER*4 JCellMax
 INTEGER*4 KCellMax
 DOUBLE PRECISION Solution Time
 INTEGER*4 StrandID
 INTEGER*4 ParentZone
 INTEGER*4 IsBlock
 INTEGER*4 NumFaceConnections
 INTEGER*4 FaceNeighborMode
 INTEGER*4 TotalNumFaceNodes,
 INTEGER*4 NumConnectedBoundaryFaces,
 INTEGER*4 TotalNumBoundaryConnections,
 INTEGER*4 PassiveVarList
 INTEGER*4 ValueLocation
 INTEGER*4 ShareVarFromZone(*)
 INTEGER*4 ShareConnectivityFromZone

C Syntax:
#include TECIO.h

INTEGER4 TECZNE111(char *ZoneTitle,
INTEGER4 *ZoneType,
INTEGER4 *IMxOrNumPts,
INTEGER4 *JMxOrNumElements,
INTEGER4 *KMxOrNumFaces,
INTEGER4 *ICellMax,
INTEGER4 *JCellMax,
INTEGER4 *KCellMax,
DOUBLE *SolutionTime,
INTEGER4 *StrandID,
INTEGER4 *ParentZone,
INTEGER4 *IsBlock,
43

TECZNE111
INTEGER4 *NumFaceConnections,
INTEGER4 *FaceNeighborMode,
INTEGER4 *TotalNumFaceNodes,
INTEGER4 *NumConnectedBoundaryFaces,
INTEGER4 *TotalNumBoundaryConnections,
INTEGER4 *PassiveVarList,
INTEGER4 *ValueLocation,
INTEGER4 *ShareVarFromZone,
INTEGER4 *ShareConnectivityFromZone)

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

Parameter Applies to Zone Type(s) Notes

ZoneTitle ALL The title of the zone. Must be null-terminated.

ZoneType ALL

The type of the zone:
0=ORDERED
1=FELINESEG
2=FETRIANGLE
3=FEQUADRILATERAL
4=FETETRAHEDRON
5=FEBRICK
6=FEPOLYGON
7=FEPOLYHEDRON

IMxOrNumPts ALL
For ordered zones, the number of nodes in the I-
index direction. For finite-element zones (cell-
based and face-based), the number of nodes.

JMxOrNu-
mElements ALL

For ordered zones, the number of nodes in the J
index direction. For finite-element zones (cell-
based and face-based), the number of elements.

KMxOrNumFaces
ORDERED
FEPOLYGON
FEPOLYHEDRON

For ordered zones, the number of nodes in the K
index direction. For polyhedral and polygonal
finite-element zones, it is the number of faces. Not
used all other finite-element zone types.

ICellMax N/A Reserved for future use. Set to zero.
44

TECZNE111
JCellMax N/A Reserved for future use. Set to zero.

KCellMax N/A Reserved for future use. Set to zero.

SolutionTime ALL

Scalar double precision value specifying the time
associated with the zone. Refer to Section 8 - 2
“Time Aware” in the User’s Manual for additional
information on working with transient data.

StrandID ALL

Scalar integer value specifying the strand to
which the zone is associated.

0 = static zone, not associated with a strand.
Values greater than 0 indicate a zone is assigned
to a given strand.

Refer to Section 8 - 2 “Time Aware” in the User’s
Manual for additional information on strands.

NOTE: If you are converting your function calls
from function calls 109 or older, use “0” for Stran-
dID.

ParentZone ALL

Scalar integer value representing the relationship
between this zone and its parent. With a parent
zone association, Tecplot 360 can generate a sur-
face streamtrace on a no-slip boundary zone. A
zone may not specify itself as its own parent.

 0 = indicates that this zone is not associated with
a parent zone.
>0 = A value greater than zero is considered this
zone's parent.

Refer to Section 8 - 2 “Time Aware” in the User’s
Manual for additional information on parent
zones and Section 16 - 3 “Surface streamtraces on
no-slip boundaries” in the User’s Manual for addi-
tional information regarding no-slip boundaries.

IsBlock ALL

Indicates whether the data will be passed into
TECDAT111 in BLOCK or POINT format.

0=POINT
1=BLOCK.

Parameter Applies to Zone Type(s) Notes
45

TECZNE111
NumFaceConnec-
tions

ORDERED
FELINESEG
FETRIANGLE
FEQUADRILATERAL
FETETRAHEDRON
FEBRICK

Used for cell-based finite-element and ordered
zones only. The number of face connections that
will be passed in routine TECFACE111.

FaceNeighborMode

ORDERED
FELINESEG
FETRIANGLE
FEQUADRILATERAL
FETETRAHEDRON
FEBRICK

Used for cell-baseda finite-element and ordered
zones only. The type of face connections that will
be passed in routine TECFACE111.

0=LocalOneToOne
2=GlobalOneToOne
1=LocalOneToMany
3=GlobalOneToMany

TotalNumFaceNo-
des

FEPOLYGON
FEPOLYHEDRON

Used for face-basedb finite-element zones. Total
number of nodes for all faces. It is also the sum of
the FaceNodeCounts array (defined in
TECPOLY111). For polygonal zones this value is
equivalent to 2 * NumFaces. NumFaces = the
number of faces in the zone. Refer to Section 2-
8.2 “FaceNodeCounts and FaceNodes” for simple
example.

NumConnected-
BoundaryFaces

FEPOLYGON
FEPOLYHEDRON

Used for face-basedb finite-element zones. Total
number of boundary faces, where boundary faces
are faces that either have more than one neigh-
boring cell on a side or have a neighboring cell
from another zone. Refer to Section 2- 8.1 “Bound-
ary Faces and Boundary Connections” for simple
example.

TotalNumBound-
aryConnections

FEPOLYGON
FEPOLYHEDRON

Used for face-basedb finite-element zones. Total
number of boundary connections for all faces. In
general, TotalNumBoundaryConnections will be
equal to NumConnectedBoundaryFaces. However,
TotalNumBoundaryConnections must be greater
than or equal to NumConnectedBoundaryFaces.
Refer to Section 2- 8.1 “Boundary Faces and Bound-
ary Connections” for simple example.

Parameter Applies to Zone Type(s) Notes
46

TECZNE111
Examples:
Refer to the following examples for illustrations of working with TECZNE111:

• Section 2- 9.1 “Face Neighbors”

• Section 2- 9.2 “Polygonal Example”

PassiveVarList ALL

Array, dimensioned by the number of variables,
of 4 byte integer values specifying the active/pas-
sive nature of each variable. A value of 0 indicates
the associated variable is active while a value of 1
indicates that it is passive. Refer to “Passive Vari-
ables” on page 7 for additional information.

ValueLocation ALL

The location of each variable in the data set. Val-
ueLocation(I) indicates the location of variable I
for this zone. 0=cell-centered, 1=node-centered.
Pass null to indicate that all variables are node-
centered.

ShareVarFromZone ALL

Indicates variable sharing. Array, dimensioned by
the number of variables. ShareVarFromZone(I)
indicates the zone number with which variable I
will be shared. This reduces the amount of data to
be passed via TECDAT111. A value of 0 indicates
that the variable is not shared. Pass null to indi-
cate no variable sharing for this zone. You must
pass null for the first zone in a data set (there is no
data available to share).

ShareConnectivity-
FromZone ALL

Indicates the zone number with which connectiv-
ity is shared. Pass 0 to indicate no connectivity
sharing. You must pass 0 for the first zone in a
data set. NOTE: Connectivity and/or face neigh-
bors cannot be shared when the face neighbor
mode is set to Global. Connectivity cannot be
shared between cell-based and face-based finite-
element zones.

a. Cell-based finite-element zones: FELINESEG, FETRIANGLE, FEQUADRILATERAL, FETETRAHEDRON,
and FEBRICK.

b. Face-based finite-element zones: FEPOLYGON and FEPOLYHEDRON.

Parameter Applies to Zone Type(s) Notes
47

TECZNE111
• Section 2- 9.3 “Multiple Polyhedral Zones”

• Section 2- 9.4 “Multiple Polygonal Zones”

• Section 2- 9.5 “Polyhedral Example”

• Section 2- 9.6 “IJ-ordered zone”

• Section 2- 9.7 “Switching between two files”

2 - 8 Defining Polyhedral and Polygonal Data
Polyhedral data is defined using both TECPOLY111 and TECZNE111. Via TECZNE111 the
number of nodes, faces, elements, boundary faces, and boundary connections are specified.
TECPOLY111 is used to specify the face mapping connections for the zone.

Before defining your polyhedral or polygonal data, you should determine the numbering scheme
for the nodes, faces and elements in each zone of your data set. The numbering scheme is commu-
nicated to Tecplot implicitly by the order in which you supply the data. For example, the first nodal
value supplied is for Node 1, followed by the value for Node 2, continuing to node N (where N is
the total number of nodes). Similarly, for faces and elements.

The remainder of this section provides simple examples illustrating how to define each of the
parameters of TECPOLY111.

2- 8.1 Boundary Faces and Boundary Connections
A “Connected Boundary Face” is a face with at least one neighboring element that belongs to
another zone. Each “Connected Boundary Face” has one or more “Boundary Connections”. A
“Boundary Connection” is defined as the element-zone tuple used to identify the neighboring
element when the element is part of another zone.
48

Defining Polyhedral and Polygonal Data
Consider the following picture:

In the figure shown above, Zone 1 contains a single element (e1) and Zone 2 contains two elements
(e1 and e2). The boundary faces and boundary connections for each zone are as follows:

• Zone 1 - In Zone 1, Face 1 (f1) is the sole connected boundary face. It has two
boundary connections. The first boundary connection is Element 1 in Zone 2. The
second boundary connection is Element 2 in Zone 2.

• NumConnectedBndryFaces = 1
• TotalNumBndryConnections = 2

• Zone 2 - In Zone 2, both Face 1 and Face 2 are connected boundary faces. There is a
total of two boundary connections. The boundary connection for each boundary face
in Zone 2 is Element 1 in Zone 1.

• NumConnectedBndryFaces = 2
• TotalNumBndryConnections = 2
49

TECZNE111
2- 8.2 FaceNodeCounts and FaceNodes
For illustration purposes, consider a zone composed of a single pyramidal element. The pyramid is
composed of five nodes and five faces.

The FaceNodeCounts array is used to specify the number of nodes that compose each face. The
values in the array are arranged as follows:

FaceNodeCounts = [NumNodesInFace1,
 NumNodesInFace2,
 ...
 NumNodesInFaceF]

where F is the total number of faces in the zone

In this example, the FaceNodeCounts array is: [3 3 3 3 4]. The first four faces are composed of
three nodes and the last face is composed of four nodes.

The FaceNodes array is used to specify which nodes belong to which face. The array is dimen-
sioned by the total number of face nodes in the zone (specified via TECZNE111). The total number
of face nodes is defined as:

Figure 2-2. A simple pyramid. The remaining triangular faces are Faces
2 and 3. The bottom rectangular face is Face 5. Node 4 is
obscured from view.

NumNodesInFacef

f 1=

F

∑

50

Defining Polyhedral and Polygonal Data
The first K values in the FaceNodes array are the node numbers for Face 1, where K is the first
value in the FaceNodeCounts array. The next L values are the node numbers for Face 2, where L is
the second value in the FaceNodeCounts array.

Consider the pyramid used above. Using the FaceNodeCounts array we have already defined and
the figure, we can create the FaceNodes array for the pyramid.

FaceNodes = [1, 2, 3
3, 2, 4,
5, 2, 4,
5, 1, 2,
1, 5, 4, 3]

When supplying the node numbers for each face, you must
supply the numbers in either a clockwise or counter-clock-
wise configuration around the face. Otherwise, the faces will
be contorted when the data is plotted.

It is not important to be consistent when choosing between clockwise or
counter-clockwise ordering. The key is to present the numbers consistently
within the numbering scheme. For example, you may present the node
numbers for face 1 in a clockwise order and the node numbers for the remain-
ing faces in counter-clockwise order.
51

TECZNE111
2- 8.3 FaceRightElems and FaceLeftElems
After specifying the face map data (via the FaceNodeCounts and FaceNodes array), the next step is
to identify the element on either side of each face. To illustrate this, we will switch from the single
element zone to the following data set:

The neighboring elements can be determined using the right-hand rule:

• 2D Data - For each face, place your right-hand along the face with your fingers
pointing in the direction of incrementing node numbers (i.e. from Node 1 to Node 2).
The right side of your hand will indicate the right element, and the left side of your
hand will indicate the left element.

• 3D Data - For each face, curl the fingers of your right-hand following the order that
the nodes were presented in the FaceNodes array. Your thumb will point to the right
element. The left element is the other adjacent element. If the face has more than one
neighboring element on a single side, you will need to use the
FaceBoundaryConnectionCounts, FaceBoundaryConnectionElems and
FaceBoundaryConnectionZones array.

The neighboring elements for each face are stored in the FaceRightElems and FaceLeftElems array.
Each array is dimensioned by the total number of faces in the zone. The first value in each array is
the right or left neighboring element for Face 1, followed by the neighboring element for Face 2,
and so forth.

FaceRightElems = [RightNeighborToFace1,
 RightNeighborToFace2,
 ...
 RightNeighborToFaceF]
52

Defining Polyhedral and Polygonal Data
FaceLeftElems = [LeftNeighborToFace1,
 LeftNeighborToFace2,
 ...
 LeftNeighborToFaceF]

where F is the total number of faces

In the above plot, the face neighbors are as follows:

The number zero is used to indicate that the face is on the edge of the data (i.e. has “no neighboring
element”).

Face Number Right Neigh-
boring Ele-

ment

Left Neigh-
boring Ele-

ment

Face 1 1 0

Face 2 1 0

Face 3 1 2

Face 4 1 3

Face 5 1 4

Face 6 1 0

Face 7 2 0

Face 8 2 0

Face 9 2 0

Face 10 2 3

Face 11 3 0

Face 12 3 4

Face 13 4 0

Face 14 4 0

Face 15 4 0
53

TECZNE111
2- 8.4 FaceBoundaryConnectionElements and Zones
When working with multiple zones, an additional aspect is folded into the FaceLeftElems and Fac-
eRightElems arrays. When the neighboring element is not within the current zone, you cannot
identify the element by its element number alone. Instead you need to specify both the element
number and its zone number. This is accomplished using the FaceBoundaryConnectionElements
and FaceBoundaryConnectionZones arrays. For each boundary connection, the element number of
the boundary connection is stored in the FaceBoundaryConnectionElements array while its zone
number is stored in the FaceBoundaryConnectionZones array.

A negative value in the FaceLeftElems or FaceRightElems array is used to indicate that the neigh-
boring element belongs to another zone. The magnitude of the negative number is a pointer to a
value in the FaceBoundaryConnectionElements and FaceBoundaryConnectionZones arrays. For
example, given the following FaceBoundaryConnectionElements and FaceBoundaryConnec-
tionZones arrays:

FaceBoundaryConnectionElements = [1 1 3 4]
FaceBoundaryConnectionZones = [2 2 3 3]

A value of -4 in the FaceLeftElems indicates that the left neighboring element for that face is
element four in zone three.

2 - 9 Examples
The following examples (written in C) provide a basic illustration of creating a *.plt file using the
TecIO library. If you plan to compile the examples, be sure to review the instructions in Section 2 -
6 “Linking with the TecIO Library” first.

In order to keep the examples as simple as possible, error checking is not included. For complete
details on the parameters used and the function syntax for each TecIO function, refer to Section 2 -
7 “Binary Data File Function Reference”. When creating a binary data file using the TecIO library,
the functions must be called in a specific order. Refer to Section 2 - 4 “Binary Data File Function
Calling Sequence” for details.

2- 9.1 Face Neighbors
This example illustrates how to (1) create two simple FE-quadrilateral zones and (2) create a face
neighbor connection between the two zones. In order to keep the example as simple as possible,
error checking is not included. If you plan to compile this example, be sure to include: TECIO.h
and malloc.h1.

1. You may notice that malloc is used throughout the example. This is done to clearly indicate the dimensions
required for each array. It is not required in practice.
54

Examples
For complete details on the parameters used and the function syntax for each TecIO function, refer
to Section 2 - 7 “Binary Data File Function Reference”. When creating a binary data file using the
TecIO library, the functions must be called in a specific order. Refer to Section 2 - 4 “Binary Data
File Function Calling Sequence” for details.

Step 1: Initialize the data file using TECINI
TECINI is required for all data files. It is used to: open the data file and initialize the file header
information (name the data file, the variables for the data file, and the file type).

• Line 8 - Specifies the name of the entire data set. When the file is loaded into Tecplot,
the value is available via the Data Set Information dialog.

• Line 9 - Defines the variables for the data file. Each zone must contain each of the
variables listed here. The order of the variables in the list is used to define the variable
number (e.g. X is Variable 1). When referring to variables in other TecIO functions,
you will refer to the variable by its number.

Step 2: Create Zone 1
After TECINI is called, call TECZNE to create one or more zones for your data file.

Line 1 INTEGER4 Debug, I, VIsDouble, FileType, NumVars;
Line 2
Line 3 Debug = 1;
Line 4 VIsDouble = 0;
Line 5 FileType = 0;
Line 6 NumVars = 3;
Line 7
Line 8 I = TECINI111("Face Neighbors Example",
Line 9 "X Y P",
Line 10 "FaceNeighbors.plt",
Line 11 ".",
Line 12 &FileType,
Line 13 &Debug,
Line 14 &VIsDouble);

Line 15 double SolTime;

Line 16 INTEGER4 ZoneType, NumPts, NumElems,

Line 17 NumFaces, StrandID, ParentZn, IsBlock,

Line 18 ICellMax, JCellMax, KCellMax, NFConns,
55

TECZNE111
Line 19 FNMode, ShrConn,

Line 20 TotalNumFaceNodes,

Line 21 NumConnectedBoundaryFaces,

Line 22 TotalNumBoundaryConnections;

Line 23 ZoneType = 3; // set the zone type to FEQuadrilateral

Line 24 NumPts = 6;

Line 25 NumElems = 2;

Line 26 NumFaces = 8;

Line 27 ICellMax = JCellMax = KCellMax = 0; //not used.

Line 28 SolTime = 360.0;

Line 29 StrandID = 0;

Line 30 ParentZn = 0;

Line 31 IsBlock = 1;

Line 32 NFConns = 1;

Line 33 FNMode = 2;

Line 34 TotalNumFaceNodes = 1; // not used for FEQuad zones

Line 35 NumConnectedBoundaryFaces = 1; // not used for

Line 36 // FEQuad zones

Line 37 TotalNumBoundaryConnections = 1;// not used for

Line 38 // FEQuad zones

Line 39 ShrConn = 0;

Line 40 INTEGER4 ValueLocation[3] = {1,1,1};

Line 41 I = TECZNE111("Zone 1",

Line 42 &ZoneType,

Line 43 &NumPts,

Line 44 &NumElems,

Line 45 &NumFaces,

Line 46 &ICellMax,

Line 47 &JCellMax,

Line 48 &KCellMax,

Line 49 &SolTime,

Line 50 &StrandID,

Line 51 &ParentZn,
56

Examples
• Line 32 - Specify the number of Face Neighbor Connections in the Zone.
When this value is greater than zero, TECFACE must be called prior to creating the
next zone or ending the file.

• Line 33 - Specify the Face Neighbor Mode. A value of 2 indicates that
the face neighbor mode is global-one-to-one. The scope of the face neighbors (local or
global) is with respect to the zones. A value of “global” indicates that the face
neighbor(s) is/are shared across zones; a value of “local” indicates that the face
neighbor(s) is/are shared within the current zone. The terms one-to-one and one-to-
many are used to indicate whether the face in question is shared with one cell or
several cells.

• Line 40 - Specify the variable values at the nodes. NOTE: Because all of the
variables are defined at the nodes, we can just pass NULL for this array. We are
providing the array for illustration purposes.

Step 3: Define the node numbering for Zone 1
For this example, we will create 2 rectangular cells in Zone 1. Before defining your variables, you
must establish a consistent node numbering scheme for your data. Once the node numbers are
defined, supply the variable values in the node numbering order. In this example, Node 1 is defined
at X = 0 and Y = 0. As such, the first value supplied for X (i.e. X[0]) is 0. Similarly, the first value
supplied for Y is 0.

Line 52 &IsBlock,

Line 53 &NFConns,

Line 54 &FNMode,

Line 55 &TotalNumFaceNodes,

Line 56 &NumConnectedBoundaryFaces,

Line 57 &TotalNumBoundaryConnections,

Line 58 NULL,

Line 59 ValueLocation,

Line 60 NULL,

Line 61 &ShrConn);

It is important that you refer to node numbers con-
sistently. The node numbers will be used later to
define the connectivity for each element.
57

TECZNE111
For this example, we will create two quadrilateral elements. The node numbering for the elements
is defined in the following picture.

Step 4: Set up the variable values
The variable values will be written to the file using TECDAT. Because we are specifying nodal
variables (as specified via the ValueLocation parameter in TECZNE), each variable is dimensioned
by the number of points (NumPts) in the Zone. You have the option to specify some variables with
nodal values and some with cell-centered values. Refer to the Section “TECZNE111” on page 42
for details.

Line 62 float *X, *Y, *P;
Line 63 X = (float*) malloc(NumPts * sizeof(float));
Line 64 Y = (float*) malloc(NumPts * sizeof(float));
Line 65 P = (float*) malloc(NumPts * sizeof(float));
Line 66

Line 67 X[0] = 0;
Line 68 X[1] = 0;
Line 69 X[2] = 1;
Line 70 X[3] = 1;
Line 71 X[4] = 2;
Line 72 X[5] = 2;

Line 73 Y[0] = 0;
Line 74 Y[1] = 1;
Line 75 Y[2] = 0;
Line 76 Y[3] = 1;
Line 77 Y[4] = 0;
Line 78 Y[5] = 1;
58

Examples
• Line 84 - Set DIsDouble to zero to use variables in float format. Set the value to one
to use double format.

Step 5: Define the connectivity list for Zone 1
The Connectivity List is used to specify the nodes that compose each element. When working with
nodal variables, the numbering of the nodes is implicitly defined when the variables are declared.
The first value of each variable is for node one, the second value for node two, and so on.

Because this zone contains two quadrilateral elements, we must supply 8 values in the connectivity
list. The first four values define the nodes that form Element 1. Similarly, the second four values
define the nodes that form Element 2.

Line 79 /* we are using a pressure variable, but the values are not
Line 80 * important for the example.*/
Line 81 INTEGER4 ii;
Line 82 for(ii=0; ii < NumPts; ii++)
Line 83 P[ii] = float(NumPts - ii);

Line 84 INTEGER4 DIsDouble = 0;
Line 85
Line 86 /* Call TECDAT once for each variable */
Line 87 I = TECDAT111(&NumPts,&X[0],&DIsDouble);
Line 88 I = TECDAT111(&NumPts,&Y[0],&DIsDouble);
Line 89 I = TECDAT111(&NumPts,&P[0],&DIsDouble);

Line 90 INTEGER4 ConnList[8] = {1,3,4,2,
Line 91 3,5,6,4};
Line 92 I = TECNOD111(ConnList);
59

TECZNE111
Step 6: Define the face neighbor connections for Zone 1
Now that TECNOD has been called, the creation of Zone 1 is complete. However, in this example,
we will define a face neighbor between Zone 1 and Zone 2 (to be created later in the example).
Face Neighbor connections are used to define connections that are not created via the connectivity
list. For example, local face neighbors may need to be defined when a zone wraps onto itself and
global face neighbors may need to be defined to smooth edges across zones. Face Neighbors are
used when deriving variables and drawing contours.

In this example, we are creating a face neighbor connection between Cell 2 in Zone 1 and Cell 1 in
Zone 2. The information required when specifying face neighbors depends upon the type of con-
nection. Refer to Section “TECFACE111” on page 19 for details.

In this case, we must supply the following information (in the order provided):

• the cell number in the current zone that contains the face neighbor

• the number of the face in that cell that contains the face neighbor

• the number of the other zone to which the face is connected

• the number of the cell in the other zone to which the face is connected

It is important to provide the node list in either a clockwise or counter-
clockwise order. Otherwise, your elements will be misshapen. For exam-
ple, if the first two numbers in the above connectivity list were switched, the
zone would appear as follows:
60

Examples
The face numbering for cell-based finite-elements is defined using Figure 2-1 on page 21. In this
example, Face 2 in Cell 2 in the current zone is connected to Cell 1 in Zone 2.

Step 7: Create Zone 2
The creation of Zone 1 is complete. We are ready to create Zone 2. For simplicity, Zone 2 is a copy
of Zone 1 shifted along the X-axis. As such, many of the variables used to create Zone 1 are re-
used here.

Line 93 INTEGER4 FaceConn[4] = {2,2,2,1};
Line 94 I = TECFACE111(FaceConn);

Line 95 I = TECZNE111("Zone 2",

Line 96 &ZoneType,

Line 97 &NumPts,

Line 98 &NumElems,

Line 99 &NumFaces,

Line 100 &ICellMax,

Line 101 &JCellMax,

Line 102 &KCellMax,

Line 103 &SolTime,

Line 104 &StrandID,

Line 105 &ParentZn,

Line 106 &IsBlock,

Line 107 &NFConns,
61

TECZNE111
Step 8: Define the variables for Zone 2
Because Zone 2 is a copy of Zone 1, shifted along the X-axis, we can share the Y variable defini-
tion used to Zone. We will also create a second pressure variable for Zone 2 (P2).

Line 108 &FNMode,

Line 109 &TotalNumFaceNodes,

Line 110 &NumConnectedBoundaryFaces,

Line 111 &TotalNumBoundaryConnections,

Line 112 NULL,

Line 113 ValueLocation,

Line 114 NULL,

Line 115 &ShrConn);

Line 116 float *X2, *P2;
Line 117 X2 = (float*) malloc(NumPts * sizeof(float));

Line 118 P2 = (float*) malloc(NumPts * sizeof(float));
Line 119
Line 120 for(ii=0; ii < NumPts; ii++)
Line 121 {
Line 122 X2[ii] = X[ii] + 2;
Line 123 P2[ii] = 2 * float(ii);
Line 124 }

Line 125 I = TECDAT111(&NumPts,&X2[0],&DIsDouble);
Line 126 I = TECDAT111(&NumPts,&Y[0],&DIsDouble);
Line 127 I = TECDAT111(&NumPts,&P2[0],&DIsDouble);

Line 128 free(X);
Line 129 free(Y);
Line 130 free(P);
Line 131 free(X2);
Line 132 free(P2);
62

Examples
Step 9: Define the connectivity list for Zone 2
As with Zone 1, we must define the connectivity list for Zone 2. Because, the node numbering
restarts at one for each new zone and the nodal arrangement is identical between the two zones, we
may reuse the connectivity list from Zone 1.

Step 10: Define the face neighbor connections for Zone 2
We will now specify the face neighbor connection with respect to our new current zone of Zone 2.

Step 11: Close the file
Call TECEND to close the file.

Line 133 I = TECNOD111(ConnList);

Line 134 INTEGER4 FaceConn2[4] = {1,4,1,2}; /* cell 1, face 4 in
Line 135 current zone is a
Line 136 neighbor to cell 2 in
Line 137 zone 1 */

Line 138 I = TECFACE111(FaceConn2);

Line 139 I = TECEND111();
63

TECZNE111
Summary
When the preceding code is compiled and built, the data file will look as follows (with the Mesh
and Edge layers turned-on):

With the Mesh layer deactivated, the data set will look as follows:

If we had not included face neighbor connections, an Edge line would be drawn in between the two
zones.
64

Examples
2- 9.2 Polygonal Example
The following example (written in C++) illustrates how to create a single octagonal cell using the
TecIO library.

In order to keep the example as simple as possible, error checking is not included. If you plan to
compile this example, be sure to include: TECIO.h and malloc.h1. The source files for this
example are included in your Tecplot 360 installation under the \util\tecio\polyhedral\octagon sub-
directory.

For complete details on the parameters used and the function syntax for each TecIO function, refer
to Section 2 - 7 “Binary Data File Function Reference”. When creating a binary data file using the
TecIO library, the functions must be called in a specific order. Refer to Section 2 - 4 “Binary Data
File Function Calling Sequence” for details.

Step 1: Initialize the data file using TECINI
TECINI is required for all data files. It is used to: open the data file and initialize the file header
information (name the data file, the variables for the data file, and the file type).

1. You may notice that malloc is used throughout the example. This is done to clearly indicate the dimensions
required for each array. It is not required in practice.

Line 140 INTEGER4 Debug, I, VIsDouble, FileType, NumVars;

Line 141

Line 142 Debug = 1;

Line 143 VIsDouble = 0;

Line 144 FileType = 0;

Line 145 NumVars = 3;

Line 146
65

TECZNE111
• Line 147 - Specifies the name of the entire data set. When the file is loaded into
Tecplot, the value is available via the Data Set Information dialog.

• Line 148 - Defines the variables for the data file. Each zone must contain each of the
variables listed here. The order of the variables in the list is used to define the variable
number (e.g. X is Variable 1). When referring to variables in other TecIO functions,
you will refer to the variable by its number.

Step 2: Create Zone 1
After TECINI is called, call TECZNE to create one or more zones for your data file.

Line 147 I = TECINI111("Octagon",

Line 148 "X Y P",

Line 149 “Octagon.plt",

Line 150 ".",

Line 151 &FileType,

Line 152 &Debug,

Line 153 &VIsDouble);

Line 154 double SolTime;

Line 155 INTEGER4 NumNodes, NumElems, NumFaces, ZoneType,

Line 156 StrandID, ParentZn, IsBlock, ICellMax, JCellMax,

Line 157 KCellMax, NFConns, FNMode, NumFaceNodes, NumBFaces,

Line 158 NumBConnections, ShrConn, ValueLocation[3];

Line 159 ZoneType = 6; /* FEPolygon */

Line 160 NumNodes = 8;

Line 161 NumElems = 1;

Line 162 NumFaces = 8;

Line 163 ICellMax = JCellMax = KCellMax = 0; //Not Used

Line 164 SolTime = 360.0;

Line 165 StrandID = 0; /* Static Zone */

Line 166 ParentZn = 0; /* No Parent */

Line 167 IsBlock = 1; /* Block */

Line 168 NFConns = 0;

Line 169 FNMode = 0;
66

Examples
• Line 160, Line 161 and Line 162 - For this example, we are creating a single octagonal
cell. As such, there are eight nodes and faces and one element.

• Line 170 - For polygonal zones, the total number of face nodes is equal to twice the
number of nodes. This is because, each face has exactly two nodes.

Line 170 NumFaceNodes = 2 * NumNodes;

Line 171 NumBFaces = 0;

Line 172 NumBConnections = 0;

Line 173 ShrConn = 0;

Line 174 ValueLocation[0] = 1;

Line 175 ValueLocation[1] = 1;

Line 176 ValueLocation[2] = 1;

Line 177 I = TECZNE111("Octagonal Zone",

Line 178 &ZoneType,

Line 179 &NumNodes,

Line 180 &NumElems,

Line 181 &NumFaces,

Line 182 &ICellMax,

Line 183 &JCellMax,

Line 184 &KCellMax,

Line 185 &SolTime,

Line 186 &StrandID,

Line 187 &ParentZn,

Line 188 &IsBlock,

Line 189 &NFConns,

Line 190 &FNMode,

Line 191 &NumFaceNodes,

Line 192 &NumBFaces,

Line 193 &NumBConnections,

Line 194 NULL,

Line 195 ValueLocation,

Line 196 NULL,

Line 197 &ShrConn);
67

TECZNE111
• Line 195 - When ValueLocation is not specified, Tecplot will treat all variables as
nodal variables. We are explicitly setting all variables to be nodal for illustration
purposes only.

Step 3: Define node numbering
For this example, we will create a single octagonal cell. Before defining your variables, you must
establish a consistent node numbering scheme for your data. Once the node numbers are defined,
supply the variable values in the node numbering order. In this example, Node 1 is defined at X =
.25 and Y = 0. As such, the first value supplied for X (i.e. X[0]) is .25. Similarly, the first value
supplied for Y is 0.

It is important that you refer to node numbers consistently. The node numbers will be used later to
define the connectivity for each element.

Step 4: Set up the variable values
Write the variable values to the file using TECDAT. Because we are specifying nodal variables (as
specified via the ValueLocation parameter in TECZNE - Line 195), each variable is dimensioned
by the number of points (NumPts) in the Zone. You have the option to specify some variables with
nodal values and some with cell-centered values. Refer to Section “TECZNE111” on page 42 for
details.
68

Examples
The order of the values supplied for each nodal variable is determined by the node numbering
established in Line 3. The first value for each variable is for Node 1, the second value for each
variable is for Node 2 and so forth.

V1 = {ValueAtNode1, ValueAtNode2, ..., ValueAtNodeN}

 where N is the total number of nodes

Line 198 float *X, *Y, *P;
Line 199 X = (float*) malloc(NumNodes * sizeof(float));
Line 200 Y = (float*) malloc(NumNodes * sizeof(float));
Line 201 P = (float*) malloc(NumNodes * sizeof(float));

Line 202 X[0] = .25;
Line 203 X[1] = .75;
Line 204 X[2] = 1.0;
Line 205 X[3] = 1.0;
Line 206 X[4] = .75;
Line 207 X[5] = .25;
Line 208 X[6] = 0.0;
Line 209 X[7] = 0.0;

Line 210 Y[0] = 0.0;
Line 211 Y[1] = 0.0;
Line 212 Y[2] = .25;
Line 213 Y[3] = .75;
Line 214 Y[4] = 1.0;
Line 215 Y[5] = 1.0;
Line 216 Y[6] = .75;
Line 217 Y[7] = .25;

Line 218 /* we are adding a pressure variable, but the values
Line 219 are insignificant */
Line 220 INTEGER4 ii;
Line 221 for (ii = 0; ii < NumNodes; ii++)
Line 222 P[ii] = .5;
69

TECZNE111
Step 5: Write out the field data using TECDAT
Now that the variables are defined, we can write them to the data file using TECDAT.

• Line 224 - Set IsDouble to zero to use variables in float format. Set IsDouble to one to
use variables in double format.

Step 6: Define the Face Nodes
The FaceNodes array is used to indicate which nodes define which face. As mentioned earlier, the
number of the nodes is implicitly defined by the order in which the nodal data is provided. The first
value of each nodal variable describes Node 1, the second value describes Node 2, and so on.

The face numbering is also implicitly defined. Because there are two nodes in each face of any
polygonal zone, the first two nodes provided define Face 1, the next two define Face 2 and so on. If
there was a variable number of nodes used to define the faces, the array would be more compli-
cated. Refer to Section 2- 9.4 “Multiple Polygonal Zones” for an example.

The following picture describes the face numbering for this example:

Line 223 INTEGER4 DIsDouble;
Line 224 DIsDouble = 0;
Line 225
Line 226 I = TECDAT111(&NumNodes, &X[0], &DIsDouble);
Line 227 I = TECDAT111(&NumNodes, &Y[0], &DIsDouble);
Line 228 I = TECDAT111(&NumNodes, &P[0], &DIsDouble);
Line 229
Line 230 free(X);
Line 231 free(Y);
Line 232 free(P);
70

Examples
As you can see, Face 1 is defined by Nodes 1 and 2, Face 2 is defined by Nodes 2 and 3, and so
forth. Because of this simple arrangement, we can use a for-loop to define all but the end points of
the face nodes array.

Step 7: Define the right and left elements of each face
The last step for writing out the polygonal data is to define the right and left neighboring elements
for each face. The neighboring elements can be determined using the right-hand rule. For each
face, place your right-hand along the face with your fingers pointing the direction of incrementing
node numbers (i.e. from Node 1 to Node 2). The right side of your hand will indicate the right ele-
ment, and the left side of your hand will indicate the left element. Refer to Section 2- 8.3 “FaceRi-
ghtElems and FaceLeftElems” for details.

The number zero is used to indicate that there isn't an element on that side of the face (i.e. the face
is on the edge of the data set). This is referred to as “no neighboring element”.

Because of the way we numbered the nodes and faces, the right element for every face is the
element itself (Element 1) and the left element is "no-neighboring element" (Element 0).

Line 233 INTEGER4 *FaceNodes;
Line 234 FaceNodes=(INTEGER4*)malloc(NumFaceNodes *sizeof(INTEGER4));
Line 235
Line 236 FaceNodes[0] = 1;
Line 237 FaceNodes[15] = 1;
Line 238
Line 239 INTEGER4 jj;
Line 240 jj = 2;
Line 241 for (ii = 1; ii < 15; ii+=2)
Line 242 {
Line 243 FaceNodes[ii] = jj;
Line 244 FaceNodes[ii+1] = jj;
Line 245 jj++;
Line 246 }

Line 247 INTEGER4 *FaceLeftElems, *FaceRightElems;

Line 248

Line 249 FaceLeftElems = (INTEGER4*)malloc(NumFaces *
sizeof(INTEGER4));

Line 250 FaceRightElems = (INTEGER4*)malloc(NumFaces*
sizeof(INTEGER4));
71

TECZNE111
Step 8: Close the file
Call TECEND to close the file.

Line 251

Line 252 for (ii = 0; ii < NumFaces; ii++)

Line 253 {

Line 254 FaceLeftElems[ii] = 0;

Line 255 FaceRightElems[ii] = 1;

Line 256 }

Line 257 /* Write the polyhedral data to the file. */

Line 258

Line 259 I = TECPOLY111(NULL,

Line 260 &FaceNodes[0],

Line 261 &FaceLeftElems[0],

Line 262 &FaceRightElems[0],

Line 263 NULL,

Line 264 NULL,

Line 265 NULL);

Line 266

Line 267 free(FaceNodes);

Line 268 free(FaceLeftElems);

Line 269 free(FaceRightElems);

Line 270 I = TECEND111();
72

Examples
2- 9.3 Multiple Polyhedral Zones
The following example demonstrates how to create two polyhedral zones, a rectangular solid and a
prism. The resulting image is a three-dimensional arrow (shown below).

This example covers the following topics: polyhedral data, working with multiple zones, and spec-
ifying partially obscured faces. In order to keep the example as simple as possible, error checking is
not included. If you plan to compile this example, be sure to include: TECIO.h and malloc.h1. The
source files for this example are included in your Tecplot 360 installation under the \util\tecio\poly-
hedral\arrow subdirectory.

For complete details on the parameters used and the function syntax for each TecIO function, refer
to Section 2 - 7 “Binary Data File Function Reference”. When creating a binary data file using the
TecIO library, the functions must be called in a specific order. Refer to Section 2 - 4 “Binary Data
File Function Calling Sequence” for details.

Step 1: Initialize the data file using TECINI
TECINI is required for all data files. It is used to: open the data file and initialize the file header
information (name the data file, the variables for the data file, and the file type).

1. You may notice that malloc is used throughout the example. This is done to clearly indicate the dimensions
required for each array. It is not required in practice.

Line 1 INTEGER4 Debug, I, VIsDouble, FileType;

Line 2

Line 3 Debug = 1;

Line 4 VIsDouble = 0;

Line 5 FileType = 0;

Line 6

Line 7 I = TECINI111("Example: Multiple polyhedral zones",
73

TECZNE111
• Line 7 - Specifies the name of the entire data set. When the file is loaded into Tecplot,
the value is available via the Data Set Information dialog.

• Line 8 - Defines the variables for the data file. Each zone must contain each of the
variables listed here. The order of the variables in the list is used to define the variable
number (e.g. X is Variable 1). When referring to variables in other TecIO functions,
you will refer to the variable by its number.

Step 2: Create Zone 1 (rectangle)
After TECINI is called, call TECZNE to create one or more zones for your data file. In this exam-
ple, Zone 1 contains a single rectangular solid created as a face-based finite-element (i.e. polyhe-
dral zone). The zone has eight points (or nodes), six faces and one element.

Line 8 "X Y Z P",

Line 9 "Arrow.plt",

Line 10 ".",

Line 11 &FileType,

Line 12 &Debug,

Line 13 &VIsDouble);

Line 14 double SolutionTime;

Line 15 INTEGER4 ZoneType, NumPts_Rect, NumElems_Rect,

Line 16 NumFaces_Rect, ICellMax, JCellMax, KCellMax,

Line 17 StrandID, ParentZone, IsBlock, NumFaceConnections,

Line 18 FaceNeighborMode, ValueLocation[4], SharConn,

Line 19 TotalNumFaceNodes_Rect, TotalNumBndryConns_Rect

Line 20 NumConnectedBndryFaces_Rect;

Line 21 //TECZNE Parameters
74

Examples
Line 22 ZoneType = 7;

Line 23 NumPts_Rect = 8;

Line 24 NumElems_Rect = 1;

Line 25 NumFaces_Rect = 6;

Line 26 ICellMax = JCellMax = KCellMax = 0;

Line 27 SolutionTime = 0.0;

Line 28 StrandID = 0;

Line 29 ParentZone = 0;

Line 30 IsBlock = 1;

Line 31 NumFaceConnections = 0; /* ...not used */

Line 32 FaceNeighborMode = 1; /* ...not used */

Line 33 SharConn = 0;

Line 34 TotalNumFaceNodes_Rect = 24;

Line 35 NumConnectedBndryFaces_Rect = 1;

Line 36 TotalNumBndryConns_Rect = 1;

Line 37 ValueLocation[0] = 1;

Line 38 ValueLocation[1] = 1;

Line 39 ValueLocation[2] = 1;

Line 40 ValueLocation[3] = 0;

Line 41 I = TECZNE111("Zone 1: Rectangular Solid",

Line 42 &ZoneType,

Line 43 &NumPts_Rect,

Line 44 &NumElems_Rect,

Line 45 &NumFaces_Rect,

Line 46 &ICellMax,

Line 47 &JCellMax,

Line 48 &KCellMax,

Line 49 &SolutionTime,

Line 50 &StrandID,

Line 51 &ParentZone,

Line 52 &IsBlock,

Line 53 &NumFaceConnections,

Line 54 &FaceNeighborMode,
75

TECZNE111
• Line 22 - Set the zone type to polyhedral.

• Line 34 - In a rectangular solid, each face is composed of four nodes. As such, the
total number of face nodes is twenty-four (four nodes for each of the six faces).

• Line 35 - There is one connected boundary face in this zone (the face on the rectangle
adjacent to the arrowhead). Refer to Section 2- 8.1 “Boundary Faces and Boundary
Connections” for additional information.

• Line 36 - The connected boundary face has one connection, the face on the bottom of
the arrowhead. A connection is an element-zone tuple that indicates a neighboring
element (and its zone) when the neighboring element is in a different zone. Generally,
there will be one boundary connection for each boundary face. Refer to Section 2- 8.1
“Boundary Faces and Boundary Connections” for additional information.

• Line 40 - For illustrative purposes, the grid variables (X, Y, and Z) are nodal variables
(i.e. ValueLocation = 1), and the pressure variable (P) is a cell-centered variable (i.e.
ValueLocation = 0).

Step 3: Set variable values for Zone 1 (rectangle)
Now that the zone has been created, we must write the variable values to the file by calling
TECDAT. While there are more elegant ways to define the grid coordinates for the rectangle, the
values are defined explicitly for simplicity.

Line 55 &TotalNumFaceNodes_Rect,

Line 56 &NumConnectedBndryFaces_Rect,

Line 57 &TotalNumBndryConns_Rect,

Line 58 NULL,

Line 59 ValueLocation,

Line 60 NULL,

Line 61 &SharConn);
76

Examples
Using the picture below, define the variable values.

For nodal variables, provides the values for each variable in nodal order. Similarly, for cell-cen-
tered values provide the variable values in cell order. The location of each variable is specified via
TECZNE.

Line 62 //set variable values (X_Rect, Y_Rect, Z_Rect & P_Rect)

Line 63

Line 64 INTEGER4 ii;

Line 65 double *X_Rect, *Y_Rect, *Z_Rect, *P_Rect;

Line 66

Line 67 X_Rect = (double*)malloc(NumPts_Rect * sizeof(double));

Line 68 Y_Rect = (double*)malloc(NumPts_Rect * sizeof(double));

Line 69 Z_Rect = (double*)malloc(NumPts_Rect * sizeof(double));

Line 70 P_Rect = (double*)malloc(NumElems_Rect * sizeof(double));

Line 71

Line 72 for(ii = 0; ii <= NumPts_Rect/2; ii+= 4)

Line 73 {

Line 74 X_Rect[ii] = 0;

Line 75 X_Rect[ii+1] = 3;

Line 76 X_Rect[ii+2] = 3;

Line 77 X_Rect[ii+3] = 0;
77

TECZNE111
• Line 93 - Specify that the variable values are in double format. Set IsDouble to 0 to
use variables in float format.

• Line 97 - Because we specified that the pressure variable is cell-centered in Line 40,
we need to provide NumElems number of values of data for Pressure.

Line 78

Line 79 Y_Rect[ii] = 3;

Line 80 Y_Rect[ii+1] = 3;

Line 81 Y_Rect[ii+2] = 1;

Line 82 Y_Rect[ii+3] = 1;

Line 83 }

Line 84

Line 85 for(ii = 0; ii<4; ii++)

Line 86 Z_Rect[ii] = 0;

Line 87

Line 88 for(ii = 4; ii <NumPts_Rect; ii++)

Line 89 Z_Rect[ii] = -2;

Line 90

Line 91 P_Rect[0] = 10;

Line 92

Line 93 INTEGER4 IsDouble = 1;

Line 94 I = TECDAT111(&NumPts_Rect, X_Rect, &IsDouble);

Line 95 I = TECDAT111(&NumPts_Rect, Y_Rect, &IsDouble);

Line 96 I = TECDAT111(&NumPts_Rect, Z_Rect, &IsDouble);

Line 97 I = TECDAT111(&NumElems_Rect, P_Rect, &IsDouble);
78

Examples
Step 4: Define the facemap data for Zone 1
Using the following figure, specify which nodes define which face.

In order to specify the face map data, you must first specify how many nodes are in each face using
the FaceNodeCounts array. After defining the FaceNodeCounts array, use the FaceNodes array to
identify the nodes that compose each face. Refer to Section 2- 8.2 “FaceNodeCounts and FaceNo-
des” for additional information.

Line 98 INTEGER4 *FaceNodeCounts_Rect = (INTEGER4*)malloc(NumFaces_Rect *
sizeof(INTEGER4));

Line 99

Line 100 INTEGER4 *FaceNodes_Rect = (INTEGER4*)malloc(TotalNumFaceNodes_Rect
* sizeof(INTEGER4));

Line 101

Line 102 //For this particular zone, each face has 4 nodes

Line 103 for(ii=0; ii<NumFaces_Rect; ii++)

Line 104 FaceNodeCounts_Rect[ii] = 4;

Line 105

Line 106 //Nodes for Face 1

Line 107 FaceNodes_Rect[0] = 1;

Line 108 FaceNodes_Rect[1] = 2;

Line 109 FaceNodes_Rect[2] = 3;

Line 110 FaceNodes_Rect[3] = 4;

Line 111

Line 112 //Nodes for Face 2

Figure 2-3. Zone 2 of the sample data. Node 7 is obscured from view and
located in the back-left hand corner. Face 6 is the bottom
face. Face 3 is opposite Face 1 and Face 4 is opposite Face 2.
79

TECZNE111
• Line 98 - The FaceNodeCounts array is used to describe the number of nodes in each
face of the zone. The first value in the array is the number of nodes in Face 1, the
second value is the number of nodes in Face 2 and so forth. In this example, each face
of the zone has four nodes.

Line 113 FaceNodes_Rect[4] = 1;

Line 114 FaceNodes_Rect[5] = 4;

Line 115 FaceNodes_Rect[6] = 8;

Line 116 FaceNodes_Rect[7] = 5;

Line 117

Line 118 //Nodes for Face 3

Line 119 FaceNodes_Rect[8] = 5;

Line 120 FaceNodes_Rect[9] = 8;

Line 121 FaceNodes_Rect[10] = 7;

Line 122 FaceNodes_Rect[11] = 6;

Line 123

Line 124 //Nodes for Face 4

Line 125 FaceNodes_Rect[12] = 2;

Line 126 FaceNodes_Rect[13] = 6;

Line 127 FaceNodes_Rect[14] = 7;

Line 128 FaceNodes_Rect[15] = 3;

Line 129

Line 130 //Nodes for Face 5

Line 131 FaceNodes_Rect[16] = 6;

Line 132 FaceNodes_Rect[17] = 2;

Line 133 FaceNodes_Rect[18] = 1;

Line 134 FaceNodes_Rect[19] = 5;

Line 135

Line 136 //Nodes for Face 6

Line 137 FaceNodes_Rect[20] = 3;

Line 138 FaceNodes_Rect[21] = 7;

Line 139 FaceNodes_Rect[22] = 8;

Line 140 FaceNodes_Rect[23] = 4;
80

Examples
• Line 100 - The FaceNodes array is used to specify the nodes that compose each face.
For each face (n of N), the number of nodes used to define the face is specified by the
nth value in the FaceNodeCounts array. For example, if the first value in the
FaceNodeCounts array is 4 (indicating Face 1 is composed of four nodes), the first
four values in the FaceNodes array are the node numbers of the nodes in Face 1.

Step 5: Specify the neighboring elements for Zone 1
The next step for writing out the polyhedral data is to define the right and left neighboring elements
for each face. The neighboring elements can be determined using the right-hand rule. For each
face, place your right-hand along the face with your fingers pointing the direction of incrementing
node numbers (i.e. from Node 1 to Node 2). The right side of your hand will indicate the right ele-
ment, and the left side of your hand will indicate the left element. Refer to Section 2- 8.3 “FaceRi-
ghtElems and FaceLeftElems” for details.

The number zero is used to indicate that there isn't an element on that side of the face. A negative
number is used when the neighboring element is in another zone. The value of the negative number
along with the FaceBndryConnectionCounts array points to the position in the FaceBoundaryCon-
nectionElems and FaceBoundaryConnectionZones arrays that defines the element and zone
numbers of the neighboring element. Refer to Line 6 for details.

Because of the way we numbered the nodes and faces, the right element for every face (except the
face connected to the arrowhead) is the element itself (Element 1) and the left element is "no-
neighboring element" (Element 0).

When providing the node numbers for each
face, you must provide the node numbers in
a consistent order (either clockwise or
counter-clockwise. Providing the node

numbers out of order results in contorted faces.

Line 141 INTEGER4 *FaceLeftElems_Rect = (INTEGER4*)malloc(NumFaces_Rect *
sizeof(INTEGER4));

Line 142

Line 143 INTEGER4 *FaceRightElems_Rect = (INTEGER4*)malloc(NumFaces_Rect *
sizeof(INTEGER4));

Line 144

Line 145 for(ii=0;ii<NumFaces_Rect;ii++)

Line 146 {
81

TECZNE111
• Line 151 - The negative value in the FaceLeftElems array indicates that the face is
connected to an element in another zone. In this case, Face 41 is connected to a face in
Zone 2 (to be defined later in the example). The FaceBoundaryConnectionElems array
lists all of the element numbers in other zones that the current zone shares boundary
connections with. Similarly, the FaceBoundaryConnectionZones array lists all of the
zone numbers with which the current zone shares boundaries.

A negative value in the FaceLeftElems or FaceRightElems array indicates the position
within these arrays that defines the neighboring element and zone for a face. For
example, if the FaceBoundaryConnectionElems array is: [1 8 2] and the FaceBound-
aryConnectionZones array is: [2 5 3], a FaceLeftElems or FaceRightElems value of -2
indicates that the face in question has a boundary connection with Element 8 in Zone
52.

Step 6: Define boundary connections for Zone 1
The last step for defining the rectangular solid is to describe the boundary connections and call
TECPOLY.

Line 147 FaceRightElems_Rect[ii] = 1;

Line 148 FaceLeftElems_Rect[ii] = 0;

Line 149 }

Line 150

Line 151 FaceLeftElems_Rect[3] = -1;

1. In C, the index values are zero-based. However, Tecplot uses a 1-based numbering scheme for nodes, faces, ele-
ments and zones.

2. This is only valid if the neighboring elements are one-to-one. If the neighboring elements are one-to-many, you
will need to refer to the FaceBndryConnectionCounts array to determine the position in the FaceBoundaryConnec-
tionElems and Zones arrays.

Line 152 INTEGER4 *FaceBndryConnectionCounts_Rect =
(INTEGER4*)malloc(NumConnectedBndryFaces_Rect * sizeof(INTEGER4));

Line 153

Line 154 INTEGER4 *FaceBndryConnectionElems_Rect =
(INTEGER4*)malloc(TotalNumBndryConns_Rect * sizeof(INTEGER4));

Line 155

Line 156 INTEGER2 *FaceBndryConnectionZones_Rect =
(INTEGER2*)malloc(TotalNumBndryConns_Rect * sizeof(INTEGER2));

Line 157 FaceBndryConnectionCounts_Rect[0] = 1;

Line 158 FaceBndryConnectionElems_Rect[0] = 1;
82

Examples
• Line 157 - The FaceBndryConnectionCounts array is used to define the number of
boundary connections for each face that has a boundary connection. For example, if a
zone has three boundary connections in total (NumConnectedBoundaryFaces), two of
those boundary connections are in one face, and the remaining boundary connection is
in a second face, the FaceBndryConnectionCounts array would be: [2 1].

In this example, the total number of connected boundary faces (specified via TECZNE
in Line 35) is equal to one, so the FaceBoundaryConnectionCounts array contains a
single value (1).

• Line 158 and Line 159 - The value(s) in the FaceBndryConnectionElems and
FaceBndryConnectionZones arrays specifies that element number and zone number,
respectively, that a given boundary connection is connected to. In this case, the
boundary connection face is connected to Element 1 in Zone 2.

Line 159 FaceBndryConnectionZones_Rect[0] = 2;

Line 160

Line 161 I = TECPOLY111(FaceNodeCounts_Rect,

Line 162 FaceNodes_Rect,

Line 163 FaceLeftElems_Rect,

Line 164 FaceRightElems_Rect,

Line 165 FaceBndryConnectionCounts_Rect,

Line 166 FaceBndryConnectionElems_Rect,

Line 167 FaceBndryConnectionZones_Rect);

Line 168

Line 169 /* cleanup */

Line 170 free(X_Rect);

Line 171 free(Y_Rect);

Line 172 free(Z_Rect);

Line 173 free(P_Rect);

Line 174 free(FaceNodeCounts_Rect);

Line 175 free(FaceNodes_Rect);

Line 176 free(FaceLeftElems_Rect);

Line 177 free(FaceRightElems_Rect);

Line 178 free(FaceBndryConnectionCounts_Rect);

Line 179 free(FaceBndryConnectionElems_Rect);

Line 180 free(FaceBndryConnectionZones_Rect);
83

TECZNE111
Step 7: Create Zone 2
The data for Zone 1 has been written to the data file, so we are ready to create Zone 2. For simplic-
ity, we will reuse many of the variables from Line 2 that are not relevant to this tutorial.

Zone 2 (the arrowhead or prism) has a single element composed of six nodes and five faces.

Line 181 INTEGER4 NumPts_Tri, NumElems_Tri, NumFaces_Tri,

Line 182 TotalNumFaceNodes_Tri, NumConnectedBndryFaces_Tri,

Line 183 TotalNumBndryConns_Tri;

Line 184

Line 185 //TECZNE Parameters

Line 186 NumPts_Tri = 6;

Line 187 NumElems_Tri = 1;

Line 188 NumFaces_Tri = 5;

Line 189 TotalNumFaceNodes_Tri = 18;

Line 190 NumConnectedBndryFaces_Tri = 1;

Line 191 TotalNumBndryConns_Tri = 2;

Line 192

Line 193 I = TECZNE111("Zone 2: Prism",

Line 194 &ZoneType,

Line 195 &NumPts_Tri,

Line 196 &NumElems_Tri,

Line 197 &NumFaces_Tri,

Line 198 &ICellMax,

Line 199 &JCellMax,

Line 200 &KCellMax,
84

Examples
• Line 189 - The prism is composed of two triangular faces and three rectangular faces.
The total number of face nodes is the sum of the nodes in each triangular face (2
times 3) and the nodes in each rectangular face (3 times 4).

• Line 190 - As in Zone 1, Zone 2 has one connected boundary face, the face that is
connected to Zone 1.

• Line 191 - In this case, we have set the total number of boundary connections for the
connected face to two. The first boundary connection is the connection to Zone 1.
The second boundary connection is used to indicate that the face is only partially
obscured by the face from Zone 1. If we omitted the second boundary connection, the
connected face of the prism would disappear if the rectangular zone was deactivated.

Step 8: Specify the variable values for Zone 2
Now that the zone has been created, we must write the variable values to the file by calling
TECDAT. While there are more elegant ways to define the grid coordinates for the prism, the
values are defined explicitly in order to keep the example relatively simple.

Line 201 &SolutionTime,

Line 202 &StrandID,

Line 203 &ParentZone,

Line 204 &IsBlock,

Line 205 &NumFaceConnections,

Line 206 &FaceNeighborMode,

Line 207 &TotalNumFaceNodes_Tri,

Line 208 &NumConnectedBndryFaces_Tri,

Line 209 &TotalNumBndryConns_Tri,

Line 210 NULL,

Line 211 ValueLocation,

Line 212 NULL,

Line 213 &SharConn);
85

TECZNE111
Using the picture below, define the variable values.

Line 214 double *X_Tri, *Y_Tri, *Z_Tri, *P_Tri;

Line 215

Line 216 X_Tri = (double*)malloc(NumPts_Tri * sizeof(double));

Line 217 Y_Tri = (double*)malloc(NumPts_Tri * sizeof(double));

Line 218 Z_Tri = (double*)malloc(NumPts_Tri * sizeof(double));

Line 219 P_Tri = (double*)malloc(NumElems_Tri * sizeof(double));

Line 220

Line 221 for(ii = 0; ii<= NumPts_Tri/2; ii+= 3)

Line 222 {

Line 223 X_Tri[ii] = 3;

Line 224 X_Tri[ii+1] = 7;

Line 225 X_Tri[ii+2] = 3;

Line 226

Line 227 Y_Tri[ii] = 4;

Line 228 Y_Tri[ii+1] = 2;

Line 229 Y_Tri[ii+2] = 0;

Line 230 }

Line 231

Line 232 for(ii = 0; ii<3; ii++)
86

Examples
• Line 243 - In Line 40, we specified that the variable 4 (pressure) is cell-centered. As
such, only NumElems number of values needs to be written to the data file for the
pressure variable.

Step 9: Define the face map for the arrowhead
Before creating the data set, we have defined the node numbers, face numbers and element num-
bers. Using the following figure, specify the nodes that define each face.

The faces are created from the data file format using the FaceNodeCounts and FaceNodes array.
The FaceNodeCounts array specifies the number of nodes contained in each face. The first value in

Line 233 Z_Tri[ii] = 0;

Line 234

Line 235 for(ii = 3; ii <NumPts_Tri; ii++)

Line 236 Z_Tri[ii] = -2;

Line 237

Line 238 P_Tri[0] = 20;

Line 239

Line 240 I = TECDAT111(&NumPts_Tri, X_Tri, &IsDouble);

Line 241 I = TECDAT111(&NumPts_Tri, Y_Tri, &IsDouble);

Line 242 I = TECDAT111(&NumPts_Tri, Z_Tri, &IsDouble);

Line 243 I = TECDAT111(&NumElems_Tri,P_Tri, &IsDouble);

Figure 2-4. The arrowhead with three faces visible (Face 2, Face 3 and Face 5). The
remaining rectangular face is Face 1, and the remaining triangular face is
Face 4).
87

TECZNE111
the array is the number of nodes in Face 1, followed by the number of nodes in Face 2, and so forth.
The FaceNodes array lists the node numbers in each face. The FaceNodes array first lists all of the
nodes in Face 1, followed by all of the nodes in Face 2, and so forth.

In this example, Face 1 is composed of four nodes (Node 1, Node 3, Node 6 and Node 4). As such,
the first value in the FaceNodeCounts array is “4” and the first four values in the FaceNodes array
are [1, 3, 6, 4].

Line 244 INTEGER4 *FaceNodeCounts_Tri, *FaceNodes_Tri;

Line 245

Line 246 FaceNodeCounts_Tri = (INTEGER4*)malloc(NumFaces_Tri *
sizeof(INTEGER4));

Line 247

Line 248 FaceNodes_Tri = (INTEGER4*)malloc(TotalNumFaceNodes_Tri *
sizeof(INTEGER4));

Line 249

Line 250 for(ii=0;ii<3;ii++)

Line 251 FaceNodeCounts_Tri[ii] = 4;

Line 252

Line 253 for(ii=3;ii<NumFaces_Tri;ii++)

Line 254 FaceNodeCounts_Tri[ii] = 3;

Line 255

Line 256 //Nodes for Face 1

Line 257 FaceNodes_Tri[0] = 1;

Line 258 FaceNodes_Tri[1] = 3;

Line 259 FaceNodes_Tri[2] = 6;

Line 260 FaceNodes_Tri[3] = 4;

Line 261

Line 262 //Nodes for Face 2

Line 263 FaceNodes_Tri[4] = 1;

Line 264 FaceNodes_Tri[5] = 4;

Line 265 FaceNodes_Tri[6] = 5;

Line 266 FaceNodes_Tri[7] = 2;

Line 267

Line 268 //Nodes for Face 3
88

Examples
• Line 251 and Line 254- Because of the way we chose to number our faces, the first
three faces are rectangular and the last two are triangular. The numbering of the faces
is arbitrary, but the faces must be referred to consistently.

Step 10: Specify the neighboring elements for Zone 2
Now that we have defined the nodes that compose each face, we must specify the element on either
side of each face. The neighboring elements can be determined using the right-hand rule. For each
face, place your right-hand along the face with your fingers pointing the direction of incrementing
node numbers (i.e. from Node 1 to Node 2). The right side of your hand will indicate the right ele-
ment, and the left side of your hand will indicate the left element. Refer to Section 2- 8.3 “FaceRi-
ghtElems and FaceLeftElems” for details.

The number zero is used to indicate that there isn't an element on that side of the face. A negative
number is used when the neighboring element is in another zone. The value of the negative number
points to the position in the FaceBoundaryConnectionElems and FaceBoundaryConnectionZones
arrays that defines the element and zone numbers of the neighboring element. Refer to Line 11 for
details.

Line 269 FaceNodes_Tri[8] = 3;

Line 270 FaceNodes_Tri[9] = 2;

Line 271 FaceNodes_Tri[10] = 5;

Line 272 FaceNodes_Tri[11] = 6;

Line 273

Line 274 //Nodes for Face 4

Line 275 FaceNodes_Tri[12] = 5;

Line 276 FaceNodes_Tri[13] = 4;

Line 277 FaceNodes_Tri[14] = 6;

Line 278

Line 279 //Nodes for Face 5

Line 280 FaceNodes_Tri[15] = 1;

Line 281 FaceNodes_Tri[16] = 2;

Line 282 FaceNodes_Tri[17] = 3;
89

TECZNE111
Because of the way we numbered the nodes and faces, the right element for every face (except the
face connected to the rectangular solid) is the element itself (Element 1) and the left element is
"no-neighboring element" (Element 0).

• Line 151 - The negative value in the FaceLeftElems array indicates that the face is
connected to an element in another zone. In this case, Face 1 is connected to a face in
Zone 1 (as indicated in Line 6). The FaceBoundaryConnectionElems array lists all of
the element numbers in other zones that the current zone shares boundary connections
with. Similarly, the FaceBoundaryConnectionZones array lists all of the zone numbers
with which the current zone shares boundaries.

A negative value in the FaceLeftElems or FaceRightElems array indicates the position
within these arrays that defines the neighboring element and zone for a face. For
example, if the FaceBoundaryConnectionElems array is: [1 8 2] and the FaceBound-
aryConnectionZones array is: [2 5 3], a FaceLeftElems or FaceRightElems value of -2
indicates that the face in question has a boundary connection with Element 8 in Zone
5.

Line 283 INTEGER4 *FaceLeftElems_Tri, *FaceRightElems_Tri;

Line 284

Line 285 FaceLeftElems_Tri = (INTEGER4*)malloc(NumFaces_Tri *
sizeof(INTEGER4));

Line 286

Line 287 FaceRightElems_Tri = (INTEGER4*)malloc(NumFaces_Tri *
sizeof(INTEGER4));

Line 288

Line 289 for(ii=0;ii<NumFaces_Tri;ii++)

Line 290 {

Line 291 FaceRightElems_Tri[ii] = 1;

Line 292 FaceLeftElems_Tri[ii] = 0;

Line 293 }

Line 294

Line 295 FaceLeftElems_Tri[0] = -1;
90

Examples
Step 11: Specify boundary connections for Zone 2
The last step for creating Zone 2 is to specify the boundary connections.

Line 296 INTEGER4 *FaceBndryConnectionCounts_Tri,

Line 297 *FaceBndryConnectionElems_Tri;

Line 298 INTEGER2 *FaceBndryConnectionZones_Tri;

Line 299

Line 300 FaceBndryConnectionCounts_Tri = (INTEGER4*)
malloc(NumConnectedBndryFaces_Tri * sizeof(INTEGER4));

Line 301

Line 302 FaceBndryConnectionElems_Tri =
(INTEGER4*)malloc(TotalNumBndryConns_Tri *
sizeof(INTEGER4));

Line 303

Line 304 FaceBndryConnectionZones_Tri =
(INTEGER2*)malloc(TotalNumBndryConns_Tri *
sizeof(INTEGER2));

Line 305

Line 306 FaceBndryConnectionCounts_Tri[0] = 2;

Line 307

Line 308 FaceBndryConnectionElems_Tri[0] = 0;

Line 309 FaceBndryConnectionZones_Tri[0] = 0;

Line 310

Line 311 FaceBndryConnectionElems_Tri[1] = 1;

Line 312 FaceBndryConnectionZones_Tri[1] = 1;

Line 313

Line 314 I = TECPOLY111(FaceNodeCounts_Tri,

Line 315 FaceNodes_Tri,

Line 316 FaceLeftElems_Tri,

Line 317 FaceRightElems_Tri,

Line 318 FaceBndryConnectionCounts_Tri,

Line 319 FaceBndryConnectionElems_Tri,

Line 320 FaceBndryConnectionZones_Tri);

Line 321

Line 322 /* cleanup */
91

TECZNE111
• Line 308 and Line 309 - As previously mentioned, a connected boundary face is a face
that has either multiple neighboring faces or neighbor(s) that belong to another zone.
Those cases are sufficient when the combination of all of the face’s neighbors
completely cover the face. However, there are some cases (such as the bottom of the
arrowhead) where the face is not completely covered by its neighbors. In those cases
the face is referred to as “partially obscured”. A partially obscured face is indicated by
incrementing the value in TotalNumConnectedBoundaryFaces and entering a value of
0 in both the FaceBndryConnectionElems and FaceBoundaryConnectionZones arrays
for the boundary connection for the partially obscured face.

• Line 311 and Line 312 - Indicates that Face 1 is connected to Element 1 in Zone 1.

Step 12: Close the file
Call TECEND to close the file.

2- 9.4 Multiple Polygonal Zones
The following example demonstrates how to create multiple polygonal zones. The example covers:
creating a zone where each element contains a different number of nodes, boundary connections
and varying variable locations (cell-centered versus nodal).

Line 323 free(X_Tri);

Line 324 free(Y_Tri);

Line 325 free(Z_Tri);

Line 326 free(P_Tri);

Line 327 free(FaceNodeCounts_Tri);

Line 328 free(FaceNodes_Tri);

Line 329 free(FaceLeftElems_Tri);

Line 330 free(FaceRightElems_Tri);

Line 331 free(FaceBndryConnectionCounts_Tri);

Line 332 free(FaceBndryConnectionElems_Tri);

Line 333 free(FaceBndryConnectionZones_Tri);

Line 334 I = TECEND111();
92

Examples
The code in this example produces the following plot:

Before beginning to create a polyhedral data file, you should assign a number to each node, face,
element and zone. The numbering system is used to determine the order that the information is
supplied to Tecplot. You may assign any order you would like. However, once you have supplied
93

TECZNE111
information to Tecplot, you cannot change the number configuration. For this example, we have
selected the numbering system shown below:

Zone 1 has a total of three elements, thirteen unique nodes and fifteen faces. Zone 2 has two ele-
ments, twelve nodes and thirteen faces.

In order to keep the example as simple as possible, error checking is not included. If you plan to
compile this example, be sure to include: TECIO.h and malloc.h1. The source files for this
example are included in your Tecplot 360 installation under the \util\tecio\polyhedral\MultiPoly2D
subdirectory.

For complete details on the parameters used and the function syntax for each TecIO function, refer
to Section 2 - 7 “Binary Data File Function Reference”. When creating a binary data file using the
TecIO library, the functions must be called in a specific order. Refer to Section 2 - 4 “Binary Data
File Function Calling Sequence” for details.

Step 1: Initialize the Data File
The first step for creating a binary data file using the TecIO library is to initialize and open the data
file by calling TECINI.

1. You may notice that malloc is used throughout the example. This is done to clearly indicate the dimensions
required for each array. It is not required in practice.

Line 1 INTEGER4 Debug, I, VIsDouble, FileType;

Line 2
94

Examples
• Line 7 - Specifies the name of the entire data set. When the file is loaded into Tecplot,
the value is available via the Data Set Information dialog.

• Line 8 - Defines the variables for the data file. Each zone must contain each of the
variables listed here. The order of the variables in the list is used to define the variable
number (e.g. X is Variable 1). When referring to variables in other TecIO functions,
you will refer to the variable by its number.

Line 3 Debug = 1;

Line 4 VIsDouble = 0;

Line 5 FileType = 0;

Line 6

Line 7 I = TECINI111("Example: Multiple polygonal zones",

Line 8 "X Y P",

Line 9 "MultiPoly2D.plt",

Line 10 ".",

Line 11 &FileType,

Line 12 &Debug,

Line 13 &VIsDouble);
95

TECZNE111
Step 2: Create Zone 1 (3 Hexagons)
The first step toward creating Zone 1 is to call TECZNE. TECZNE is used to initialize the zone
and specify parameters that apply to the entire zone (e.g. number of nodes, number of elements and
variable location).

Line 14 INTEGER4 ZoneType, NumPts_Z1, NumElems_Z1, NumFaces_Z1,

Line 15 ICellMax, JCellMax, KCellMax, StrandID,

Line 16 ParentZone, IsBlock, NumFaceConnections,

Line 17 FaceNeighborMode, ValueLocation[3], SharConn,

Line 18 TotalNumFaceNodes_Z1, TotalNumBndryFaces_Z1,

Line 19 TotalNumBndryConns_Z1;

Line 20 double SolutionTime;

Line 21

Line 22 //TECZNE Parameters
96

Examples
Line 23 ZoneType = 6;

Line 24 NumPts_Z1 = 13;

Line 25 NumElems_Z1 = 3;

Line 26 NumFaces_Z1 = 15;

Line 27 ICellMax = JCellMax = KCellMax = 0;

Line 28 SolutionTime = 0.0;

Line 29 StrandID = 0;

Line 30 ParentZone = 0;

Line 31 IsBlock = 1;

Line 32 NumFaceConnections = 0;

Line 33 FaceNeighborMode = 1;

Line 34 SharConn = 0;

Line 35 ValueLocation[0] = 1;

Line 36 ValueLocation[1] = 1;

Line 37 ValueLocation[2] = 0;

Line 38

Line 39 TotalNumFaceNodes_Z1 = 2 * NumFaces_Z1;

Line 40 TotalNumBndryFaces_Z1 = 3;

Line 41 TotalNumBndryConns_Z1 = 3;

Line 42

Line 43 I = TECZNE111("Zone 1: 3 Hexagons",

Line 44 &ZoneType,

Line 45 &NumPts_Z1,

Line 46 &NumElems_Z1,

Line 47 &NumFaces_Z1,

Line 48 &ICellMax,

Line 49 &JCellMax,

Line 50 &KCellMax,

Line 51 &SolutionTime,

Line 52 &StrandID,

Line 53 &ParentZone,

Line 54 &IsBlock,

Line 55 &NumFaceConnections,
97

TECZNE111
• Line 23 - Set the zone type to polygonal.

• Line 24 - Specify that the zone contains 13 nodes or points.

• Line 25 - Specify that the zone contains 3 elements.

• Line 26 - Specify that the zone contains 15 faces.

• Line 39 - For a polygonal zone, the total number of face nodes is twice the total
number of faces. This is because each face is composed of exactly two nodes.

• Line 40 - A boundary face is a face that is neighbored by an element or elements in
another zone or zone(s). In Zone 1, Face 9, Face 10 and Face 12 have a neighbor in
Zone 2. Therefore, the total number of boundary faces is “3”.

• Line 41 - Each boundary face has one or more boundary connections. A boundary
connection is defined as another element in another zone. Face 9 has a boundary
connection with Element 1 in Zone 2. In this example, each boundary face is
connected to one other element, so the total number of boundary connections is
equivalent to the total number of boundary faces (3).

Step 3: Specify the variable values for Zone 1
The variable values are written to the data file via the TECDAT function. For each variable you
must provide either a total number of values equivalent to NumPts (if the variables are nodal) or a
total number of values equivalent to NumElems (if the variables are cell-centered). The variable
location is specified by the VarLocation parameter in TECZNE. In this example, X and Y are nodal
variables and P is cell-centered.

The order in which the variable values must be provided is established by the numbering scheme
(specified at the beginning of the example). The first value for each nodal variable (X and Y) cor-

Line 56 &FaceNeighborMode,

Line 57 &TotalNumFaceNodes_Z1,

Line 58 &TotalNumBndryFaces_Z1,

Line 59 &TotalNumBndryConns_Z1,

Line 60 NULL,

Line 61 ValueLocation,

Line 62 NULL,

Line 63 &SharConn);
98

Examples
responds to Node 1, the second value corresponds to Node 2 and so forth. The first value for the
cell-centered value is for Element 1, the second value is for the second element or cell and so forth.

In order for the example to be easily followed , the grid coordinates are explicitly defined. When
working with larger data sets, you will likely wish to use equations to define your coordinates.
Refer to the picture in Line 2 for the X and Y coordinate values for Zone 1.

Line 64 double *X_Z1, *Y_Z1;

Line 65 X_Z1 = (double*)malloc(NumPts_Z1 * sizeof(double));

Line 66 Y_Z1 = (double*)malloc(NumPts_Z1 * sizeof(double));

Line 67

Line 68 X_Z1[0] = 1;

Line 69 Y_Z1[0] = 6;

Line 70

Line 71 X_Z1[1] = 2;

Line 72 Y_Z1[1] = 6;

Line 73

Line 74 X_Z1[2] = 3;

Line 75 Y_Z1[2] = 5;

Line 76

Line 77 X_Z1[3] = 2;

Line 78 Y_Z1[3] = 4;

Line 79

Line 80 X_Z1[4] = 1;

Line 81 Y_Z1[4] = 4;

Line 82

Line 83 X_Z1[5] = 0;

Line 84 Y_Z1[5] = 5;

Line 85

Line 86 X_Z1[6] = 4;

Line 87 Y_Z1[6] = 5;

Line 88

Line 89 X_Z1[7] = 5;

Line 90 Y_Z1[7] = 4;

Line 91
99

TECZNE111
Line 92 X_Z1[8] = 4;

Line 93 Y_Z1[8] = 3;

Line 94

Line 95 X_Z1[9] = 3;

Line 96 Y_Z1[9] = 3;

Line 97

Line 98 X_Z1[10] = 2;

Line 99 Y_Z1[10] = 2;

Line 100

Line 101 X_Z1[11] = 1;

Line 102 Y_Z1[11] = 2;

Line 103

Line 104 X_Z1[12] = 0;

Line 105 Y_Z1[12] = 3;

Line 106

Line 107 double *P_Z1;

Line 108 P_Z1 = (double*)malloc(NumElems_Z1 * sizeof(double));

Line 109

Line 110 P_Z1[0] = 2;

Line 111 P_Z1[1] = 4;

Line 112 P_Z1[2] = 5;

Line 113

Line 114 INTEGER4 IsDouble = 1;

Line 115

Line 116 I = TECDAT111(&NumPts_Z1, &X_Z1[0], &IsDouble);

Line 117 I = TECDAT111(&NumPts_Z1, &Y_Z1[0], &IsDouble);

Line 118 I = TECDAT111(&NumElems_Z1, &P_Z1[0], &IsDouble);

Line 119 free(X_Z1);

Line 120 free(Y_Z1);

Line 121 free(P_Z1);
100

Examples
Step 4: Specify the face map data for Zone 1
Use the picture in Line 2 to specify the nodes that compose each face. The first two values in the
face node array define Face 1, the next two define Face 2, and so on.

Line 122 INTEGER4 *FaceNodes_Z1;

Line 123

Line 124 FaceNodes_Z1 = (INTEGER4*)malloc(TotalNumFaceNodes_Z1 *
sizeof(INTEGER4));

Line 125

Line 126 //Face Nodes for Element 1

Line 127 FaceNodes_Z1[0] = 1;

Line 128 FaceNodes_Z1[1] = 2;

Line 129

Line 130 FaceNodes_Z1[2] = 2;

Line 131 FaceNodes_Z1[3] = 3;

Line 132

Line 133 FaceNodes_Z1[4] = 3;

Line 134 FaceNodes_Z1[5] = 4;

Line 135

Line 136 FaceNodes_Z1[6] = 4;

Line 137 FaceNodes_Z1[7] = 5;

Line 138

Line 139 FaceNodes_Z1[8] = 5;

Line 140 FaceNodes_Z1[9] = 6;

Line 141

Line 142 FaceNodes_Z1[10] = 6;

Line 143 FaceNodes_Z1[11] = 1;

Line 144

Line 145 //Face Nodes for Element 2

Line 146 FaceNodes_Z1[12] = 3;

Line 147 FaceNodes_Z1[13] = 7;

Line 148

Line 149 FaceNodes_Z1[14] = 7;

Line 150 FaceNodes_Z1[15] = 8;
101

TECZNE111
Step 5: Specify the neighboring elements for Zone 1
Now that we have defined the nodes that compose each face, we must specify the element on either
side of each face. The neighboring elements can be determined using the right-hand rule. For each
face, place your right-hand along the face with your fingers pointing the direction of incrementing
node numbers (i.e. from Node 1 to Node 2). The right side of your hand will indicate the right ele-
ment, and the left side of your hand will indicate the left element. Refer to Section 2- 8.3 “FaceRi-
ghtElems and FaceLeftElems” for details.

The number zero is used to indicate that there isn't an element on that side of the face. A negative
number is used when the neighboring element is in another zone. The value of the negative number
points to the position in the FaceBoundaryConnectionElems and FaceBoundaryConnectionZones

Line 151

Line 152 FaceNodes_Z1[16] = 8;

Line 153 FaceNodes_Z1[17] = 9;

Line 154

Line 155 FaceNodes_Z1[18] = 9;

Line 156 FaceNodes_Z1[19] = 10;

Line 157

Line 158 FaceNodes_Z1[20] = 10;

Line 159 FaceNodes_Z1[21] = 4;

Line 160

Line 161 //Face Nodes for Element 3

Line 162 FaceNodes_Z1[22] = 10;

Line 163 FaceNodes_Z1[23] = 11;

Line 164

Line 165 FaceNodes_Z1[24] = 11;

Line 166 FaceNodes_Z1[25] = 12;

Line 167

Line 168 FaceNodes_Z1[26] = 12;

Line 169 FaceNodes_Z1[27] = 13;

Line 170

Line 171 FaceNodes_Z1[28] = 13;

Line 172 FaceNodes_Z1[29] = 5;
102

Examples
arrays that defines the element and zone numbers of the neighboring element. Refer to Line 6 for
details.

Because of the way we numbered the nodes and faces, the right element for every face is the
element itself. The left element will either be: another element in the zone, “no neighboring ele-
ment”, or an element in Zone 2. The term “no neighboring element” is used to describe a face that
is on the edge of the entire data set (not just the zone).

Line 173 INTEGER4 *FaceLeftElems_Z1, *FaceRightElems_Z1;

Line 174

Line 175 FaceLeftElems_Z1 = (INTEGER4*)malloc(NumFaces_Z1 *
sizeof(INTEGER4));

Line 176

Line 177 FaceRightElems_Z1= (INTEGER4*)malloc(NumFaces_Z1 *
sizeof(INTEGER4));

Line 178

Line 179 //Left Face Elems for Element 1

Line 180 FaceLeftElems_Z1[0] = 0;

Line 181 FaceLeftElems_Z1[1] = 0;

Line 182 FaceLeftElems_Z1[2] = 2;

Line 183 FaceLeftElems_Z1[3] = 3;

Line 184 FaceLeftElems_Z1[4] = 0;

Line 185 FaceLeftElems_Z1[5] = 0;

Line 186

Line 187 //Left Face Elems for Element 2

Line 188 FaceLeftElems_Z1[6] = 0;

Line 189 FaceLeftElems_Z1[7] = 0;

Line 190 FaceLeftElems_Z1[8] = -1;

Line 191 FaceLeftElems_Z1[9] = -2;

Line 192 FaceLeftElems_Z1[10] = 2;

Line 193

Line 194 //Left Face Elems for Element 3

Line 195 FaceLeftElems_Z1[11] = -3;

Line 196 FaceLeftElems_Z1[12] = 0;

Line 197 FaceLeftElems_Z1[13] = 0;
103

TECZNE111
• Line 190, Line 191, Line 195 - A negative value indicates that the neighboring element
is in another zone. The number is a pointer into the FaceBndryConnectionElems and
FaceBndryConnectionZones arrays. In this example, Line 195 indicates that the left
neighboring element for Face 121 is element two in zone two. Refer to the following
step for details.

Step 6: Specify the boundary connections for Zone 1
The final step for creating Zone 1 is to define the boundary connections and call TECPOLY.

Line 198 FaceLeftElems_Z1[14] = 0;

Line 199

Line 200 INTEGER4 ii;

Line 201 //Set Right Face Elems

Line 202 for(ii=0;ii<6;ii++)

Line 203 FaceRightElems_Z1[ii] = 1;

Line 204

Line 205 for(ii=6;ii<10;ii++)

Line 206 FaceRightElems_Z1[ii] = 2;

Line 207

Line 208 for(ii=10;ii<=14;ii++)

Line 209 FaceRightElems_Z1[ii] = 3;

1. In C, the index values are zero-based. However, Tecplot uses a 1-based numbering scheme for nodes, faces, ele-
ments and zones.

Line 210 //Dimensioned by the TotalNumBndryFaces

Line 211 INTEGER4 FaceBndryConnectionCounts_Z1[3] = {1,1,1};

Line 212 INTEGER4 FaceBndryConnectionElems_Z1[3] = {1,2,2};

Line 213 INTEGER2 FaceBndryConnectionZones_Z1[3] = {2,2,2};

Line 214

Line 215 I = TECPOLY111(NULL,

Line 216 &FaceNodes_Z1[0],

Line 217 &FaceLeftElems_Z1[0],

Line 218 &FaceRightElems_Z1[0],

Line 219 &FaceBndryConnectionCounts_Z1[0],

Line 220 &FaceBndryConnectionElems_Z1[0],
104

Examples
• Line 211 - The FaceBndryConnectionCounts array is used to define the number of
boundary connections for each face that has a boundary connection. For example, if a
zone has three boundary connections in total (NumConnectedBoundaryFaces), two of
those boundary connections are in one face, and the remaining boundary connection is
in a second face, the FaceBndryConnectionCounts array would be: [2 1].

In this example, the total number of connected boundary faces (specified via TECZNE
in Line 41) is equal to three. Each boundary face is connected to only one other ele-
ment, so the FaceBoundaryConnectionCounts array is (1, 1, 1).

• Line 212 and Line 213 - The value(s) in the FaceBndryConnectionElems and
FaceBndryConnectionZones arrays specifies the element number and zone number,
respectively, that a given boundary connection is connected to. In this case, the first
boundary connection face is connected to Element 1 in Zone 2 and the remaining
connection is to Element 2 in Zone 2.

Line 221 &FaceBndryConnectionZones_Z1[0]);

Line 222

Line 223 free(FaceNodes_Z1);

Line 224 free(FaceLeftElems_Z1);

Line 225 free(FaceRightElems_Z1);
105

TECZNE111
Step 7: Create Zone 2
Now that Zone 1 is complete, we are ready to begin creating Zone 2 by calling TECZNE. For sim-
plicity, we are reusing many of the variables that were defined for Zone 1.

Line 226 INTEGER4 NumPts_Z2, NumElems_Z2, NumFaces_Z2,

Line 227 NumFaceConnections_Z2, TotalNumBndryFaces_Z2,

Line 228 TotalNumBndryConns_Z2, TotalNumFaceNodes_Z2;

Line 229

Line 230 NumPts_Z2 = 12;

Line 231 NumElems_Z2 = 2;

Line 232 NumFaces_Z2 = 13;

Line 233 NumFaceConnections_Z2 = 0;

Line 234 TotalNumFaceNodes_Z2 = NumFaces_Z2 * 2;

Line 235 TotalNumBndryFaces_Z2 = 3;

Line 236 TotalNumBndryConns_Z2 = 3;

Line 237

Line 238 I = TECZNE111("Zone 2: 1 Hexagon and 1 Octagon",
106

Examples
• Line 230 - Specify that the zone contains 12 nodes or points.

• Line 231 - Specify that the zone contains 2 elements.

• Line 232 - Specify that the zone contains 13 faces.

• Line 235 - A boundary face is a face that is neighbored by an element or elements from
another zone or zone(s). In Zone 2, Face 6, Face 7 and Face 13 have a neighbor in
Zone 1. Therefore, the total number of boundary faces is “3”.

• Line 236 - Each boundary face has one or more boundary connections. In this
example, each boundary face is connected to one other element (i.e. the number of
boundary faces and the number of boundary connections is one-to-one).

Line 239 &ZoneType,

Line 240 &NumPts_Z2,

Line 241 &NumElems_Z2,

Line 242 &NumFaces_Z2,

Line 243 &ICellMax,

Line 244 &JCellMax,

Line 245 &KCellMax,

Line 246 &SolutionTime,

Line 247 &StrandID,

Line 248 &ParentZone,

Line 249 &IsBlock,

Line 250 &NumFaceConnections_Z2,

Line 251 &FaceNeighborMode,

Line 252 &TotalNumFaceNodes_Z2,

Line 253 &TotalNumBndryFaces_Z2,

Line 254 &TotalNumBndryConns_Z2,

Line 255 NULL,

Line 256 ValueLocation,

Line 257 NULL,

Line 258 &SharConn);
107

TECZNE111
Step 8: Specify the variable values for Zone 2
The variable values are written to the data file via the TECDAT function. For each variable you
must provide either a total number of values equivalent to NumPts (if the variables are nodal) or
equivalent to NumElems (if the variables are cell-centered). The variable location is specified by
the VarLocation parameter in TECZNE. In this example, X and Y are nodal variables and P is cell-
centered.

The order in which the variable values must be provided is established by the numbering scheme
specified at the beginning of the example. The first value for each nodal variable (X and Y) corre-
sponds to Node 1, the second value corresponds to Node 2 and so forth. The first value for the cell-
centered value is for Element 1, the second value is for the second element or cell and so forth.

In order for the example to be easily followed , the grid coordinates are explicitly defined. When
working with larger data sets, you will likely wish to use equations to define your coordinates.
Refer to the picture in Line 7 for the X and Y coordinate values for Zone 2.

Line 259 double *X_Z2, *Y_Z2;

Line 260

Line 261 X_Z2 = (double*) malloc(NumPts_Z2 * sizeof(double));

Line 262 Y_Z2 = (double*) malloc(NumPts_Z2 * sizeof(double));

Line 263

Line 264 X_Z2[0] = 5;

Line 265 X_Z2[1] = 6;

Line 266 X_Z2[2] = 7;

Line 267 X_Z2[3] = 6;

Line 268 X_Z2[4] = 5;

Line 269 X_Z2[5] = 4;

Line 270 X_Z2[6] = 3;

Line 271 X_Z2[7] = 5;

Line 272 X_Z2[8] = 4;

Line 273 X_Z2[9] = 3;

Line 274 X_Z2[10] = 2;

Line 275 X_Z2[11] = 2;

Line 276

Line 277 Y_Z2[0] = 4;

Line 278 Y_Z2[1] = 4;
108

Examples
Step 9: Specify the face map for Zone 2
Use the picture in Line 7 to specify which nodes compose which face. The first two values in the
face node array define Face 1, the next two define Face 2, and so on.

Line 279 Y_Z2[2] = 3;

Line 280 Y_Z2[3] = 2;

Line 281 Y_Z2[4] = 2;

Line 282 Y_Z2[5] = 3;

Line 283 Y_Z2[6] = 3;

Line 284 Y_Z2[7] = 1;

Line 285 Y_Z2[8] = 0;

Line 286 Y_Z2[9] = 0;

Line 287 Y_Z2[10] = 1;

Line 288 Y_Z2[11] = 2;

Line 289

Line 290 double *P_Z2;

Line 291 P_Z2 = (double*) malloc(NumPts_Z2 * sizeof(double));

Line 292

Line 293 P_Z2[0] = 8;

Line 294 P_Z2[1] = 6;

Line 295

Line 296 I = TECDAT111(&NumPts_Z2, &X_Z2[0], &IsDouble);

Line 297 I = TECDAT111(&NumPts_Z2, &Y_Z2[0], &IsDouble);

Line 298 I = TECDAT111(&NumElems_Z2, &P_Z2[0], &IsDouble);

Line 299

Line 300 free(X_Z2);

Line 301 free(Y_Z2);

Line 302 free(P_Z2);

Line 303 INTEGER4 *FaceNodes_Z2;

Line 304

Line 305 FaceNodes_Z2 = (INTEGER4*) malloc(TotalNumFaceNodes_Z2 *
sizeof(INTEGER4));

Line 306
109

TECZNE111
Line 307 //Face Nodes for Element 1

Line 308 FaceNodes_Z2[0] = 1;

Line 309 FaceNodes_Z2[1] = 2;

Line 310

Line 311 FaceNodes_Z2[2] = 2;

Line 312 FaceNodes_Z2[3] = 3;

Line 313

Line 314 FaceNodes_Z2[4] = 3;

Line 315 FaceNodes_Z2[5] = 4;

Line 316

Line 317 FaceNodes_Z2[6] = 4;

Line 318 FaceNodes_Z2[7] = 5;

Line 319

Line 320 FaceNodes_Z2[8] = 5;

Line 321 FaceNodes_Z2[9] = 6;

Line 322

Line 323 FaceNodes_Z2[10] = 6;

Line 324 FaceNodes_Z2[11] = 1;

Line 325

Line 326

Line 327 //Face Nodes for Element 2

Line 328 FaceNodes_Z2[12] = 7;

Line 329 FaceNodes_Z2[13] = 6;

Line 330

Line 331 FaceNodes_Z2[14] = 5;

Line 332 FaceNodes_Z2[15] = 8;

Line 333

Line 334 FaceNodes_Z2[16] = 8;

Line 335 FaceNodes_Z2[17] = 9;

Line 336

Line 337 FaceNodes_Z2[18] = 9;

Line 338 FaceNodes_Z2[19] = 10;

Line 339
110

Examples
Step 10: Specify the neighboring elements for Zone 2
Now that we have defined the nodes that compose each face, we must specify the element on either
side of each face. The neighboring elements can be determined using the right-hand rule. For each
face, place your right-hand along the face with your fingers pointing the direction of incrementing
node numbers (i.e. from Node 1 to Node 2). The right side of your hand will indicate the right ele-
ment, and the left side of your hand will indicate the left element. Refer to Section 2- 8.3 “FaceRi-
ghtElems and FaceLeftElems” for details.

The number zero is used to indicate that there isn't an element on that side of the face. A negative
number is used when the neighboring element is in another zone. The value of the negative number
points to the position in the FaceBoundaryConnectionElems and FaceBoundaryConnectionZones
arrays that defines the element and zone numbers of the neighboring element. Refer to Line 11 for
details.

Because of the way we numbered the nodes and faces, the right element for every face is the
element itself. The left element will either be: another element in the zone, “no neighboring ele-
ment”, or an element in Zone 2. The term “no neighboring element” is used to describe a face that
is on the edge of the entire data set (not just the zone).

Line 340 FaceNodes_Z2[20] = 10;

Line 341 FaceNodes_Z2[21] = 11;

Line 342

Line 343 FaceNodes_Z2[22] = 11;

Line 344 FaceNodes_Z2[23] = 12;

Line 345

Line 346 FaceNodes_Z2[24] = 12;

Line 347 FaceNodes_Z2[25] = 7;

Line 348 INTEGER4 *FaceLeftElems_Z2, *FaceRightElems_Z2;

Line 349

Line 350 FaceLeftElems_Z2 = (INTEGER4*) malloc(NumFaces_Z2 *
sizeof(INTEGER4));

Line 351 FaceRightElems_Z2 = (INTEGER4*) malloc(NumFaces_Z2 *
sizeof(INTEGER4));

Line 352

Line 353 //Left Face Elems for Element 1

Line 354 FaceLeftElems_Z2[4] = 2;
111

TECZNE111
• Line 355, Line 356, Line 357 - A negative value indicates that the neighboring element
is in another zone. The number is a pointer into the FaceBndryConnectionElems and
FaceBndryConnectionZones arrays. In this example, Line 357 indicates that the left
element of Face 13 is element three in zone one. Refer to the following step for
details.

• Line 366 - Line 372 - For brevity we have explicitly defined which faces have “no
neighboring element” (i.e. are on the edge of the data set) and used a for loop to set the
neighboring element value to “0”.

Step 11: Specify the Boundary Connections for Zone 2
The final step for creating Zone 2 is to define the boundary connections and call TECPOLY

Line 355 FaceLeftElems_Z2[5] = -1;

Line 356 FaceLeftElems_Z2[6] = -2;

Line 357 FaceLeftElems_Z2[12] = -3;

Line 358

Line 359 //Set Right Face Elems

Line 360 for(ii=0;ii<6;ii++)

Line 361 FaceRightElems_Z2[ii] = 1;

Line 362

Line 363 for(ii=6;ii<13;ii++)

Line 364 FaceRightElems_Z2[ii] = 2;

Line 365

Line 366 //Set Left Face Elems that are "no neighboring element"

Line 367 INTEGER4 FacesWithNoNeighboringElements_Z2[9] =

Line 368 { 1, 2, 3, 4, //Faces in Element 1

Line 369 8, 9, 10, 11, 12}; //Faces in Element 2

Line 370

Line 371 for (ii=0;ii<9;ii++)

Line 372 FaceLeftElems_Z2[FacesWithNoNeighboringElements_Z2[ii]-1]=0;

Line 1 INTEGER4 FaceBndryConnectionCounts_Z2[3] = {1,1,1};

Line 2 INTEGER4 FaceBndryConnectionElems_Z2[3] = {2,3,3};

Line 3 INTEGER2 FaceBndryConnectionZones_Z2[3] = {1,1,1};

Line 4
112

Examples
• Line 1 - The FaceBndryConnectionCounts array is used to define the number of
boundary connections for each face that has a boundary connection. In this example,
the total number of connected boundary faces (specified via TECZNE in Line 235) is
equal to three. Each boundary face is connected to only one other element, so the
FaceBoundaryConnectionCounts array is (1, 1, 1).

• Line 2 and Line 3 - The value(s) in the FaceBndryConnectionElems and
FaceBndryConnectionZones arrays specifies that element number and zone number,
respectively, that a given boundary connection is connected to. In this case, the first
boundary connection face is connected to Element 2 in Zone 1 and the remaining
connections are Element 3 in Zone 1.

Step 12: Close the file using TECEND
Call TECEND to close the file.

2- 9.5 Polyhedral Example
The following example (written in C) illustrates how to create a single polyhedral cell using the
TecIO library.

Line 5 I = TECPOLY111(NULL,

Line 6 &FaceNodes_Z2[0],

Line 7 &FaceLeftElems_Z2[0],

Line 8 &FaceRightElems_Z2[0],

Line 9 &FaceBndryConnectionCounts_Z2[0],

Line 10 &FaceBndryConnectionElems_Z2[0],

Line 11 &FaceBndryConnectionZones_Z2[0]);

Line 12

Line 13 free(FaceNodes_Z2);

Line 14 free(FaceLeftElems_Z2);

Line 15 free(FaceRightElems_Z2);

Line 16 I = TECEND111();

Line 17 #include "TECIO.h"

Line 18 #include "MASTER.h"

Line 19
113

TECZNE111
Line 20 #define NUMNODES 6

Line 21 #define NUMELEMENTS 1

Line 22 #define NUMFACES 8

Line 23 #define NUMFACENODES 24

Line 24

Line 25 int main()

Line 26 {

Line 27 /* Declare Variables */

Line 28 double SolutionTime;

Line 29 INTEGER4 FileType, Debug, VIsDouble;

Line 30 INTEGER4 *VarShareArray, ShrConn, DIsDouble;

Line 31 INTEGER4 ZoneType, IMaxOrNumNodes, JMaxOrNumElems,
KMaxOrNumFaces;

Line 32 INTEGER4 ICellMax, JCellMax, KCellMax, StrandID,
ParentZone,

Line 33 INTEGER4 IsBlock;

Line 34 INTEGER4 NFConns, FNMode, *PassiveVarArray,
*ValueLocArray;

Line 35 INTEGER4 IsOk, NumFaceNodes, NumBConns, NumBItems;

Line 36

Line 37 /* Initialize arrays of nodal data */

Line 38 double X[NUMNODES] = { 0, 1, 0, -1, 0, 0 };

Line 39 double Y[NUMNODES] = { -1, 0, 1, 0, 0, 0 };

Line 40 double Z[NUMNODES] = { 0, 0, 0, 0, 1, -1 };

Line 41

Line 42 /*

Line 43 * Initialize Face Map Arrays:

Line 44 * FaceNodes holds face nodes in the order face1, face2...

Line 45 * FaceLeftElems and FaceRightElems hold the one-based
element

Line 46 * numbers for the right and left elements for a given
face.

Line 47 * Ordered face1, face2 ...

Line 48 * FaceNodeCounts gives the number of nodes in each face
114

Examples
Line 49 */

Line 50 INTEGER4 FaceNodes[NUMFACENODES] = {1, 2, 5, 2, 3, 5, 3,
4, 5,

Line 51 4, 1, 5, 1, 2, 6, 2,
3, 6,

Line 52 3, 4, 6, 4, 1, 6};

Line 53 INTEGER4 FaceLeftElems[NUMFACES] = {1,1,1,1,0,0,0,0 };

Line 54 INTEGER4 FaceRightElems[NUMFACES] = { 0,0,0,0,1,1,1,1 };

Line 55 INTEGER4 FaceNodeCounts[NUMFACES] = { 3,3,3,3,3,3,3,3 };

Line 56

Line 57

Line 58 /* Set the variable that will be used for error tracking.*/

Line 59 IsOk = TRUE;

Line 60

Line 61 /* Call TECINI111 */

Line 62 FileType = 0; /* 0 for full file, 1 for grid file,

Line 63 * 2 for solution file*/

Line 64 Debug = 1; /* 0 for no debug output, 1 to show debug */

Line 65 VIsDouble = 1; /* 0 for single precision,

Line 66 1 for double precision */

Line 67

Line 68 IsOk = TECINI111("Test Polyhedral Data Set",

Line 69 "X Y Z", /* Variable List */

Line 70 "simplepolyhedron.plt", /* File Name */

Line 71 ".", /* Scratch Dir */

Line 72 &(FileType),

Line 73 &(Debug),

Line 74 &(VIsDouble));

Line 75

Line 76

Line 77 /* Call TECZNE111 */

Line 78 ZoneType = 7; /* 7 for FEPolyhedron */

Line 79 IMaxOrNumNodes = NUMNODES; /* Num of nodes */

Line 80 JMaxOrNumElems = NUMELEMENTS; /* Num of elements */
115

TECZNE111
Line 81 KMaxOrNumFaces = NUMFACES; /* Num of Faces */

Line 82 ICellMax = 0; /* Not Used, set to zero */

Line 83 JCellMax = 0; /* Not Used, set to zero */

Line 84 KCellMax = 0; /* Not Used, set to zero */

Line 85 SolutionTime = 12.65; /* The solution time for the zone */

Line 86 StrandID = 0; /* The strandid for the zone,

Line 87 * zero for static zones */

Line 88 ParentZone = 0; /* The ParentZone for this zone,

Line 89 * zero for no parent */

Line 90 IsBlock = 1; /* One for passing the data one

Line 91 * variable at a time, Zero for

Line 92 * passing the data one point

Line 93 * at a time */

Line 94 NFConns = 0; /* Number of face neighbor

Line 95 * connections, not used

Line 96 * for FEPolyhedron zones
*/

Line 97 FNMode = 0; /* Not used for Polyhedron zones */

Line 98 PassiveVarArray = NULL; /* No passive variables */

Line 99 ValueLocArray = NULL; /* All nodal variables */

Line 100 VarShareArray = NULL; /* No variable sharing */

Line 101 ShrConn = 0; /* No connectivity sharing */

Line 102 NumFaceNodes = NUMFACENODES; /* The num of face nodes */

Line 103 NumBConns = 0; /* No Boundary Connections */

Line 104 NumBItems = 0; /* No Boundary Items */

Line 105

Line 106 IsOk = TECZNE111("Polyhedral Zone (Octahedron)",

Line 107 &(ZoneType),

Line 108 &(IMaxOrNumNodes),

Line 109 &(JMaxOrNumElems),

Line 110 &(KMaxOrNumFaces),

Line 111 &ICellMax,

Line 112 &JCellMax,
116

Examples
Line 113 &KCellMax,

Line 114 &SolutionTime,

Line 115 &StrandID,

Line 116 &ParentZone,

Line 117 &IsBlock,

Line 118 &NFConns,

Line 119 &FNMode,

Line 120 &NumFaceNodes,

Line 121 &NumBConns,

Line 122 &NumBItems,

Line 123 PassiveVarArray,

Line 124 ValueLocArray,

Line 125 VarShareArray,

Line 126 &ShrConn);

Line 127

Line 128

Line 129 /* Write the data (using TECDAT111) */

Line 130 DIsDouble = 1; /* double precision */

Line 131 IsOk = TECDAT111(&(IMaxOrNumNodes), &(X[0]),
&(DIsDouble));

Line 132 IsOk = TECDAT111(&(IMaxOrNumNodes), &(Y[0]),
&(DIsDouble));

Line 133 IsOk = TECDAT111(&(IMaxOrNumNodes), &(Z[0]),
&(DIsDouble));

Line 134

Line 135 /* Write the face map (created above) using TECPOLY111. */

Line 136 IsOk = TECPOLY111(&(FaceNodeCounts[0]),

Line 137 &(FaceNodes[0]),

Line 138 &(FaceLeftElems[0]),

Line 139 &(FaceRightElems[0]),

Line 140 NULL,

Line 141 NULL,

Line 142 NULL);

Line 143 IsOk = TECEND111();
117

TECZNE111
2- 9.6 IJ-ordered zone
The following example illustrates how to create a simple IJ-ordered zone. TECZNE111 is called
first to initialize the zone.

Line 144 return 0;

Line 145 }
Line 146

Line 147 #include <stdio.h>

Line 148 #include <string.h>

Line 149 #include "TECIO.h"

Line 150 int main ()

Line 151 {

Line 152 float X[2][2], Y[2][2], P[2][2];

Line 153 double SolTime;

Line 154 INTEGER4 Debug, I, III, DIsDouble, VIsDouble, IMax, JMax;

Line 155 INTEGER4 KMax, ZoneType, StrandID, ParentZn, IsBlock;

Line 156 INTEGER4 ICellMax, JCellMax, KCellMax;

Line 157 INTEGER4 NFConns, FNMode, ShrConn, FileType;

Line 158 INTEGER4 TotalNumFaceNodes, TotalNumBndryFaces,

Line 159 TotalNumBoundaryConnections;

Line 160

Line 161 Debug = 1;

Line 162 VIsDouble = 0;

Line 163 DIsDouble = 0;

Line 164 IMax = 2;

Line 165 JMax = 2;

Line 166 KMax = 1;

Line 167 ZoneType = 0; /* Ordered Zone */

Line 168 SolTime = 360.0;

Line 169 StrandID = 0; /* Static Zone */

Line 170 ParentZn = 0; /* No Parent */

Line 171 IsBlock = 1; /* Block */

Line 172 ICellMax = 0;
118

Examples
Line 173 JCellMax = 0;

Line 174 KCellMax = 0;

Line 175 NFConns = 0;

Line 176 FNMode = 0;

Line 177 TotalNumFaceNodes = 1;

Line 178 TotalNumBndryFaces = 1;

Line 179 TotalNumBoundaryConnections = 1;

Line 180 ShrConn = 0;

Line 181 FileType = 0;

Line 182

Line 183 /* Variable Values */

Line 184

Line 185 X[0][0] = .125;

Line 186 X[1][0] = .625;

Line 187 X[0][1] = .125;

Line 188 X[1][1] = .625;

Line 189

Line 190 Y[0][0] = .5;

Line 191 Y[1][0] = .5;

Line 192 Y[0][1] = .875;

Line 193 Y[1][1] = .875;

Line 194

Line 195 P[0][0] = 5;

Line 196 P[1][0] = 7.5;

Line 197 P[0][1] = 10;

Line 198 P[1][1] = 7.5;

Line 199 /*

Line 200 * Open the file and write the tecplot datafile header

Line 201 * information

Line 202 */

Line 203 I = TECINI111("SIMPLE DATASET",

Line 204 "X Y P",

Line 205 "SimpleOrderedZone.plt",
119

TECZNE111
Line 206 ".",

Line 207 &FileType,

Line 208 &Debug,

Line 209 &VIsDouble);

Line 210 I = TECZNE111("Ordered Zone",

Line 211 &ZoneType,

Line 212 &IMax,

Line 213 &JMax,

Line 214 &KMax,

Line 215 &ICellMax,

Line 216 &JCellMax,

Line 217 &KCellMax,

Line 218 &SolTime,

Line 219 &StrandID,

Line 220 &ParentZn,

Line 221 &IsBlock,

Line 222 &NFConns,

Line 223 &FNMode,

Line 224 &TotalNumFaceNodes,

Line 225 &TotalNumBndryFaces,

Line 226 &TotalNumBoundaryConnections,

Line 227 NULL,

Line 228 NULL,

Line 229 NULL,

Line 230 &ShrConn);

Line 231 III = IMax * JMax * KMax;

Line 232 I = TECDAT111(&III,&X[0][0],&DIsDouble);

Line 233 I = TECDAT111(&III,&Y[0][0],&DIsDouble);

Line 234 I = TECDAT111(&III,&P[0][0],&DIsDouble);

Line 235

Line 236 I = TECEND111();

Line 237

Line 238 return 0;
120

Examples
2- 9.7 Switching between two files
In this simplified example, information is written to two separate files. First, one file is created and
a zone is written to the file. Then, a second file is created and a zone and auxiliary data are written
to the file. The second file is closed and the auxiliary data is written to the first file.

Line 239 }

Line 240

Line 1 int main ()

Line 2 {

Line 3 /* initialize file 1 */

Line 4 INTEGER4 Debug, I, VIsDouble, FileType;

Line 5 float X2[2][2], Y2[2][2], P2[2][2];

Line 6 float X3[2][2], Y3[2][2], P3[2][2];

Line 7 double SolTime;

Line 8 INTEGER4 DIsDouble, III, IMax, JMax, KMax, ZoneType;

Line 9 INTEGER4 StrandID, ParentZn, IsBlock;

Line 10 INTEGER4 ICellMax, JCellMax, KCellMax, NFConns, FNMode;

Line 11 INTEGER4 ShrConn, TotalNumFaceNodes, TotalNumBndryFaces,

Line 12 TotalNumBoundaryConnections;

Line 13 char DeformationValue[128];

Line 14 strcpy(DeformationValue,"0.98");

Line 15

Line 16 ICellMax = 0;

Line 17 JCellMax = 0;

Line 18 KCellMax = 0;

Line 19 DIsDouble = 0;

Line 20 SolTime = 360.0;

Line 21 StrandID = 0; /* Static Zone */

Line 22 ParentZn = 0;

Line 23 IsBlock = 1; /* Block */

Line 24 NFConns = 0;

Line 25 FNMode = 0;

Line 26 TotalNumFaceNodes = 1;
121

TECZNE111
Line 27 TotalNumBndryFaces = 1;

Line 28 TotalNumBoundaryConnections = 1;

Line 29 ShrConn = 0;

Line 30 /* Ordered Zone Parameters */

Line 31 IMax = 2;

Line 32 JMax = 2;

Line 33 KMax = 1;

Line 34

Line 35 X2[0][0] = .125;

Line 36 X2[1][0] = .625;

Line 37 X2[0][1] = .125;

Line 38 X2[1][1] = .625;

Line 39

Line 40 Y2[0][0] = .5;

Line 41 Y2[1][0] = .5;

Line 42 Y2[0][1] = .875;

Line 43 Y2[1][1] = .875;

Line 44

Line 45 P2[0][0] = 5;

Line 46 P2[1][0] = 7.5;

Line 47 P2[0][1] = 10;

Line 48 P2[1][1] = 7.5;

Line 49

Line 50 X3[0][0] = .375;

Line 51 X3[1][0] = .875;

Line 52 X3[0][1] = .375;

Line 53 X3[1][1] = .875;

Line 54

Line 55 Y3[0][0] = .125;

Line 56 Y3[1][0] = .125;

Line 57 Y3[0][1] = .5;

Line 58 Y3[1][1] = .5;

Line 59
122

Examples
Line 60 P3[0][0] = 5;

Line 61 P3[1][0] = 7.5;

Line 62 P3[0][1] = 10;

Line 63 P3[1][1] = 7.5;

Line 64

Line 65

Line 66 Debug = 1;

Line 67 VIsDouble = 0;

Line 68 FileType = 0;

Line 69

Line 70

Line 71 /*

Line 72 * Open the file and write the tecplot datafile

Line 73 * header information

Line 74 */

Line 75 I = TECINI111("SIMPLE DATASET",

Line 76 "X Y P",

Line 77 "file1.plt",

Line 78 ".",

Line 79 &FileType,

Line 80 &Debug,

Line 81 &VIsDouble);

Line 82

Line 83

Line 84 /* Ordered Zone */

Line 85 ZoneType = 0;

Line 86 I = TECZNE111("Ordered Zone",

Line 87 &ZoneType,

Line 88 &IMax,

Line 89 &JMax,

Line 90 &KMax,

Line 91 &ICellMax,

Line 92 &JCellMax,
123

TECZNE111
Line 93 &KCellMax,

Line 94 &SolTime,

Line 95 &StrandID,

Line 96 &ParentZn,

Line 97 &IsBlock,

Line 98 &NFConns,

Line 99 &FNMode,

Line 100 &TotalNumFaceNodes,

Line 101 &TotalNumBndryFaces,

Line 102 &TotalNumBoundaryConnections,

Line 103 NULL,

Line 104 NULL,

Line 105 NULL,

Line 106 &ShrConn);

Line 107 III = IMax * JMax * KMax;

Line 108 I = TECDAT111(&III,&X2[0][0],&DIsDouble);

Line 109 I = TECDAT111(&III,&Y2[0][0],&DIsDouble);

Line 110 I = TECDAT111(&III,&P2[0][0],&DIsDouble);

Line 111

Line 112 I = TECINI111("Auxiliary Data",

Line 113 "X Y P",

Line 114 "file2.plt",

Line 115 ".",

Line 116 &FileType,

Line 117 &Debug,

Line 118 &VIsDouble);

Line 119 III = 2;

Line 120 I = TECFIL111(&III);

Line 121

Line 122 I = TECAUXSTR111("DeformationValue",

Line 123 DeformationValue);

Line 124

Line 125 I = TECZNE111("Ordered Zone2",
124

Examples
Line 126 &ZoneType,

Line 127 &IMax,

Line 128 &JMax,

Line 129 &KMax,

Line 130 &ICellMax,

Line 131 &JCellMax,

Line 132 &KCellMax,

Line 133 &SolTime,

Line 134 &StrandID,

Line 135 &ParentZn,

Line 136 &IsBlock,

Line 137 &NFConns,

Line 138 &FNMode,

Line 139 &TotalNumFaceNodes,

Line 140 &TotalNumBndryFaces,

Line 141 &TotalNumBoundaryConnections,

Line 142 NULL,

Line 143 NULL,

Line 144 NULL,

Line 145 &ShrConn);

Line 146 III = IMax * JMax * KMax;

Line 147 I = TECDAT111(&III,&X3[0][0],&DIsDouble);

Line 148 I = TECDAT111(&III,&Y3[0][0],&DIsDouble);

Line 149 I = TECDAT111(&III,&P3[0][0],&DIsDouble);

Line 150 III = 2;

Line 151 I = TECFIL111(&III);

Line 152 I = TECEND();

Line 153

Line 154

Line 155 III = 1;

Line 156 I = TECFIL111(&III);

Line 157 I = TECAUXSTR111("DeformationValue",

Line 158 DeformationValue);
125

TECZNE111
2- 9.8 Text Example
The following example creates a data file with a single text box reading “Sample Text”.

Line 159

Line 160 I = TECEND111();

Line 161 return 0;

Line 1 int main ()

Line 2 {

Line 3 double XPos, YPos, ZPos, FontHeight, BoxMargin,

Line 4 BoxLineThickness, Angle, LineSpacing;

Line 5 INTEGER4 Debug, I, VIsDouble, FileType, PosCoordMode,

Line 6 AttachToZone, Zone, Font, FontHeightUnits, BoxType,

Line 7 BoxColor, BoxFillColor, Anchor, TextColor, Scope,

Line 8 Clipping;

Line 9 char Text[60], MFC[24];

Line 10

Line 11 /* set file parameters */

Line 12 Debug = 1;

Line 13 VIsDouble = 0;

Line 14 FileType = 0;

Line 15

Line 16 /* set TECTXT parameters */

Line 17 XPos = 0.0;

Line 18 YPos = 1.0;

Line 19 ZPos = 2.0;

Line 20 PosCoordMode = 0;

Line 21 AttachToZone = 0;

Line 22 Zone = 2;

Line 23 Font = 1;

Line 24 FontHeightUnits = 2;

Line 25 FontHeight = 18;

Line 26 BoxType = 1;
126

Examples
Line 27 BoxMargin = .5;

Line 28 BoxLineThickness = .1;

Line 29 BoxColor = 0;

Line 30 BoxFillColor = 1;

Line 31 Angle = 30;

Line 32 Anchor = 1;

Line 33 LineSpacing = 1.5;

Line 34 TextColor = 7;

Line 35 Scope = 1;

Line 36 Clipping = 1;

Line 37 strcpy(Text,"Sample Text");

Line 38 strcpy(MFC,"My Macro");

Line 39 /*

Line 40 * Open the file and write the tecplot datafile

Line 41 * header information

Line 42 */

Line 43 I = TECINI111("SIMPLE DATASET",

Line 44 "X Y P",

Line 45 "textgeom.plt",

Line 46 ".",

Line 47 &FileType,

Line 48 &Debug,

Line 49 &VIsDouble);

Line 50 I = TECTXT111(&XPos,

Line 51 &YPos,

Line 52 &ZPos,

Line 53 &PosCoordMode,

Line 54 &AttachToZone,

Line 55 &Zone,

Line 56 &Font,

Line 57 &FontHeightUnits,

Line 58 &FontHeight,

Line 59 &BoxType,
127

TECZNE111
2- 9.9 Geometry Example
The following example creates a data file with a single square geometry and no zones.

Line 60 &BoxMargin,

Line 61 &BoxLineThickness,

Line 62 &BoxColor,

Line 63 &BoxFillColor,

Line 64 &Angle,

Line 65 &Anchor,

Line 66 &LineSpacing,

Line 67 &TextColor,

Line 68 &Scope,

Line 69 &Clipping,

Line 70 &Text[0],

Line 71 &MFC[0]);

Line 72 I = TECEND111();

Line 73 return 0;

Line 74 }
Line 75

Line 76 int main ()

Line 77 {

Line 78 INTEGER4 Debug, I, VIsDouble, FileType;

Line 79 double XPos, YPos, ZPos, PatternLength, LineThick;

Line 80 double ArrowSize, ArrowAngle;

Line 81 INTEGER4 I, PosCoordMode, AttachToZone, Color, FillColor;

Line 82 INTEGER4 IsFilled, GeomType, LinePattern, Scope, Clipping;

Line 83 INTEGER4 Zone, NumPts, ArrowStyle, ArrowAttach;

Line 84 INTEGER4 NumSegments, NumSegPts;

Line 85 float XGeomData, YGeomData, ZGeomData;

Line 86 char MFC[128];

Line 87

Line 88 XPos = 1.0;
128

Examples
Line 89 YPos = 2.0;

Line 90 ZPos = 3.0;

Line 91

Line 92 PosCoordMode = 0;

Line 93 AttachToZone = 0;

Line 94 Zone = 1;

Line 95 Color = 0;

Line 96 FillColor = 6;

Line 97 IsFilled = 1;

Line 98 GeomType = 2;

Line 99 LinePattern = 5;

Line 100 PatternLength = .1;

Line 101 LineThick = .2;

Line 102 NumPts = 100;

Line 103

Line 104 ArrowStyle = 1;

Line 105 ArrowAttach = 0;

Line 106 ArrowSize = 1;

Line 107 ArrowAngle = 30;

Line 108

Line 109 Scope = 1;

Line 110 Clipping = 1;

Line 111

Line 112 NumSegments = 15;

Line 113 NumSegPts = 25;

Line 114

Line 115 XGeomData = 4;

Line 116 YGeomData = 6;

Line 117 ZGeomData = 8;

Line 118

Line 119 strcpy(MFC,"SQUARE");

Line 120 Debug = 1;

Line 121 VIsDouble = 0;
129

TECZNE111
Line 122 FileType = 0;

Line 123

Line 124

Line 125 /*

Line 126 * Open the file and write the tecplot datafile header
information */

Line 127 I = TECINI111("SQUARE GEOMETRY",

Line 128 "X Y P",

Line 129 "square.plt",

Line 130 ".",

Line 131 &FileType,

Line 132 &Debug,

Line 133 &VIsDouble);

Line 134

Line 135 I = TECGEO111(&XPos,

Line 136 &YPos,

Line 137 &ZPos,

Line 138 &PosCoordMode,

Line 139 &AttachToZone,

Line 140 &Zone,

Line 141 &Color,

Line 142 &FillColor,

Line 143 &IsFilled,

Line 144 &GeomType,

Line 145 &LinePattern,

Line 146 &PatternLength,

Line 147 &LineThick,

Line 148 &NumPts,

Line 149 &ArrowStyle,

Line 150 &ArrowAttach,

Line 151 &ArrowSize,

Line 152 &ArrowAngle,

Line 153 &Scope,
130

Examples
Line 154 &Clipping,

Line 155 &NumSegments,

Line 156 &NumSegPts,

Line 157 &XGeomData,

Line 158 &YGeomData,

Line 159 &ZGeomData,

Line 160 MFC);

Line 161 I = TECEND111();

Line 162

Line 163 return 0;

Line 164 }
Line 165
131

TECZNE111
132

Chapter 3 ASCII Data
Files exported into Tecplot’s data format may be either ASCII or binary. However, we strongly rec-
ommend using Tecplot’s binary file format (*.plt). The ASCII file format is provided to illustrate
how data is structured in Tecplot. ASCII data format is useful only for very small data files.
Reading an ASCII data file into Tecplot 360 can be much slower than reading a binary data file, as
binary data files are structured for more efficient data access, and Tecplot 360 must convert from
ASCII to binary prior to loading the data. Refer to Chapter 2 “Binary Data” for information on
creating files in Tecplot’s binary format.

3 - 1 Preplot
Tecplot 360 or Preplot converts ASCII data files to binary. See Section 4 - 15 “Tecplot-Format
Loader” in the User’s Manual for converting with Tecplot 360, or Section 3 - 6 “ASCII Data File
Conversion to Binary” for converting with Preplot. A description of the binary format is included in
Appendix A “Binary Data File Format”. Finally, if your data is generated in FORTRAN or C, you
may be able to generate binary data files directly using the utilities described in Chapter 2 “Binary
Data”.

Alternatively, you may write your own Tecplot data loader using Tecplot 360’s Add-on Developer’s
Kit (ADK). Refer to Chapter 22 “Creating a Data Loader” in the ADK User’s Manual for details.

3 - 2 Syntax Rules & Limits
An ASCII data file begins with a file header defining a title for the data file and/or the names of the
variables. The header is followed by zone records containing the plot data. Zone records may
contain ordered or finite-element data. You may also include text, geometry, and custom-label
records that create text, geometries, and/or custom labels on plots. The records in the file may be in
any order.

ASCII data files have the following limits:
133

ASCII Data
• Number of Records - Each data file may have up to 32,700 zone records, ten custom
label records, and any number of text and geometry records.

• Maximum Characters per Line - The maximum length of a line in a data file is
32,000 characters.

There are additional limits specific to some of the record types and parameters. These limits are
discussed in the section for the associated record type or parameter.

When writing an ASCII data file, please keep the following syntax rules in mind:

• Character Strings - Double quotes must be used to enclose character strings with
embedded blank spaces or other special characters.

• Multiple Lines - Any line may be continued onto one or more following lines (except
for text enclosed in double quotes ["]).

• Escape Characters - A backslash (\) may be used to remove the significance of (or
escape) the next character (that is, \" produces a single double-quote).

• Comments - Any line beginning with an # is treated as a comment and ignored.

The following simple example of a Tecplot 360 ASCII data file has one small zone and a single line
of text:

TITLE="Simple Data File"
VARIABLES="X" "Y"
ZONE I=4 DATAPACKING=POINT
1 1
2 1
2 2
1 2
TEXT X=10 Y=90 T="Simple Text"

3 - 3 ASCII File Structure
An ASCII data file begins with an file header defining a title for the data file and or the names of
the variables. The header is followed by optional zone records containing the plot data. Zone
records may contain ordered or finite-element data. Refer to Chapter 3 “Data Structure” in the
User’s Manual for a complete description of ordered and finite-element data. You may also include
text, geometry, and custom-label records, in any order.
134

ASCII File Structure
The first line in a zone, text, geometry, custom label, data set auxiliary data record or variable aux-
iliary record begins with the keyword ZONE, TEXT, GEOMETRY, CUSTOMLABELS, DATASE-
TAUXDATA, or VARAUXDATA.

3- 3.1 File Header
The File Header is an optional component of an ASCII data file. It may contain a TITLE, FILE-
TYPE and/or a VARIABLES list. If the file header occurs in a place other than at the top of the
data file, a warning is printed and the header is ignored. This allows you to concatenate two or more
ASCII data files before using Tecplot 360 (provided each data file has the same number of vari-
ables per data point).

Primary Components of ASCII Data Files

File Header

Zone Record

Geometry Record

Custom Labels Record

Data Set Auxiliary Data Record

Variable Auxiliary Data Record

Text Record
135

ASCII Data
File Header Components

Example Grid File
The following example displays a very simple 2D grid file.

#"Grid" files look like standard Tecplot data files with no solution
variables.
TITLE = "Example Grid File"
FILETYPE = GRID
VARIABLES = "X" "Y"
ZONE
I = 3, J = 3, K = 1
ZONETYPE = Ordered, DATAPACKING = BLOCK
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0.0 0.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0

Example Solution File
The following example displays a very simple solution file (to be used with the Example Grid File).

TITLE = "Example Solution File"
FILETYPE = SOLUTION
VARIABLES = "Pressure"
ZONE
I = 3, J = 3, K = 1
ZONETYPE = Ordered, DATAPACKING = BLOCK
2.0 2.0 2.0 0.0 0.0 0.0 2.0 2.0 2.0

Token Syntax Notes
TITLE = “<string>” The title will be displayed in the headers of Tecplot 360 frames.
FILETYPE =FULL, GRID or

SOLUTION
Specifies the data file type. A full data file contains both grid and
solution data. If omitted, the FILETYPE will be treated as “FULL”.

VARIABLES = “VARNAME1”,
“VARNAME2”,
“VARNAME3”, ...,
“VARNAMEN”

You may also assign a name to each of the variables by including a line
that begins with VARIABLES=, followed by each variable’s name
enclosed in double quotes. Tecplot 360 calculates the number of
variables (N) from the list of variable names. If you do not specify the
variable names (and your first zone has POINT data packing), Tecplot
360 sets the number of variables equal to the number of numeric values
in the first line of zone data for the first zone, and names the variables
V1, V2, V3, and so forth. Initially, Tecplot 360 uses the first two
variables in data files as the X- and Y-coordinates, and the third variable
for the Z-coordinate of 3D plots. However, you may order the variables
in the data file any way you want, since you can interactively reassign
the variables to the X-, Y-, and/or Z-axes via the Select Variables dialog
(accessed via Plot>Assign XYZ).
136

ASCII File Structure
3- 3.2 Zone Record
A zone record consists of a control line that begins with the keyword ZONE, followed by the zone
header, followed by a set of numerical data called the zone data. The contents of the zone footer
depend upon the type of zone. Refer to the following table for an overview of the contents of a
zone record.

Component Notes

ZONE The keyword “ZONE” is required at the start of every
zone record

Zone Header The Zone Header is used to specify the type of data in
the zone, the structure of the data, the names of the vari-
ables in the zone, and more. Refer to “Zone Header” on
page 138 for details.

Data The data section follows the zone header. The arrange-
ment of the data is dependent upon the values of DATA-
PACKING and VARLOCATION (specified in the Zone
Header). Refer to “Data” on page 142 for details.

Zone Footer The contents required for the Zone Footer depend upon
the ZONETYPE (specified in the Zone Header).

For ordered zones, the Zone Footer contains
the Face Neighbor Connections List information
(if any).

For cell-based finite-element zones (FETRI-
ANGLE, FEQUADILATERAL, FETETRA-
HEDRAL and FEBRICK), the Zone Footer
contains Connectivity information, followed by
Face Neighbor Connections List.

For face-based finite-element zones (FEPOLY-
HEDRAL, FEPOLYGON), the Zone Footer
contains Facemap Data, followed by Boundary
Map Data.

Refer to “Zone Footer” on page 145 for additional infor-
mation.
137

ASCII Data
Zone Header

Keyword Syntax Required
(Y/N)

Default Notes

ZONE Y Keyword required to start a zone record
T = <string> N Zone Title. This may be any text string

up to 128 characters in length. If you
supply a longer text string, it is
automatically truncated to the first 128
characters. The titles of zones appear in
the Zone Style and other dialogs, and,
optionally, in the XY- plot legend.

ZONETYPE =
<zonetype>

N ORDERE
D

The zone data are of the type specified
by the ZONETYPE parameter in the
control line. There are two basic types of
zones: ordered and finite-element.
ORDERED is presumed if the ZONETYPE
parameter is omitted. See Section 3 - 4
“Ordered Data” for more information on
ordered zones, and Section 3 - 5 “Finite-
Element Data” for details on finite-
element data.

ZoneType, please note that some features
in Tecplot 360are limited by zone type.
For example, iso-surfaces and slices are
available for 3D zones types only
(FETETRAHEDRON, FEBRICK,
FEPOLYHEDRON and ORDERED -
with K greater than 1).

However, the plot type that you specify
(in Tecplot 360 once you have loaded
your data) is not limited by your zone
type. You may have a 3D zone displayed
in a 2D Cartesian plot (and visa versa).

I = <integer> Y Specify the maximum number of points
in the I- J- or K-direction. Use only
when ZONETYPE is ORDERED.J = <integer> Y

K = <integer> Y
NODES = <integer> Y Use for finite-element zone types only

(i.e. not ordered zones). Specify the total
number of NODES, ELEMENTS and
FACES in the data file. Refer to Section
3 - 5 “Finite-Element Data” for
additional information.

ELEMENTS = <integer> Y
FACES = <integer> Y

TOTALNUMF
ACENODES

= <integer> Y (for polyhedral
zones)

For face-based finite-element zones only.
Total number of nodes in the Facemap
Data section for all faces. This is
optional for polygons as
TotalNumFaceNodes = 2*NumFaces.

NUMCONNEC
TEDBOUNDA
RYFACES

= <integer> Y For face-based finite-element zones only.
Total number of boundary faces listed in
the Facemap Data section. Set to zero if
boundary faces aren't used.
138

ASCII File Structure
TOTALNUMB
OUNDARYCO
NNECTIONS

= <integer> Y For face-based finite-element zones only.
Total number of entries for boundary
items listed in the Facemap Data section.
Set to zero if boundary faces aren't used.

FACENEIGH
BORMODE

=
[LOCALONE
TOONE,

LOCALONET
OMANY,

GLOBALON
ETOONE,

GLOBALON
ETOMANY]

N LOCALO
NETOON
E

For ordered or cell-based finite-element
zones only. Used to indicate whether the
neighboring faces are within the current
zone or in another zone (i.e. local or
global), as well as whether the
connections are one-to-one or one-to-
many. When this token is used, both the
FACENEIGHBORCONNECTIONS
token and the FaceNeighbor Connections
List are required. Refer to Section “Face
Neighbor Connections List” on page 146
for details.

FACENEIGH
BORCONNEC
TIONS

= <integer> Y, if
FACENEIGHBO
RMODE,is in use.

For ordered or cell-based finite-element
zones only. Used to indicate the total
number of connections for all elements
in the zone. For example, if you have
two cells with three connections each,
the number of face neighbor connections
is equal to six. When this token is used,
both the FACENEIGHBORMODE token
and the FaceNeighbor Connections List
are required. Refer to Section “Face
Neighbor Connections List” on page 146
for details.

DT =
(<datatype>
for var1,
<datatype>
for var2, ...,
<datatype>
for varn)

N SINGLE Each variable in each zone in the data
file may have its own data type. The data
type determines the amount of storage
Tecplot 360 assigns to each variable.
Therefore, the lowest level data type
should be used whenever possible. For
example, imaging data, which usually
consists of numerical values ranging
from zero to 255, should be given a data
type of BYTE. By default, Tecplot 360
treats numeric data as data type SINGLE.
If any variable in the zone uses the BIT
data type, the DATAPACKING must be
BLOCK. Refer to “Data” on page 142
for details.

DATAPACKI
NG

=
<datapacking
>

N BLOCK In POINT format, the values for all
variables are given for the first point,
then the second point, and so on. In
BLOCK format, all of the values for the
first variable are given in a block, then all
of the values for the second variable,
then all of the values for the third, and so
forth. BLOCK format must be used for
cell-centered data and polyhedral zones
(FEPOLYGON/FEPOLYHEDRAL).

Keyword Syntax Required
(Y/N)

Default Notes
139

ASCII Data
VARLOCATI
ON

=([set-of-
vars]=<varlo
cation>,[set-
of-
vars]=<varlo
cation>, ...)

N NODAL Each variable in each zone in a data file
may be located at the nodes or the cell-
centers. Each variable is specified as
NODAL or CELLCENTERED in the
VARLOCATION parameter array. All
cell-centered variables must list one
value for each element. With nodal
variables, one value must be listed for
each node. Zones with cell-centered
variables must be in BLOCK data
packing format.

VARSHAREL
IST

=([set-of-
vars]=
<zone>, [set-
of-
vars]=<zone
>)

N If zone
number is
omitted,
the
variables
are shared
from the
previous
zone.

Used for variables that are exactly the
same for a set of zones. Specify the
integer value of the source zone.
Ordered zones may only share with
ordered zones having the same
dimensions. Finite-element zones may
share with any zone having the same
number of nodes, for nodal variables, or
the same number of cells, for cell-
centered data.

NV = <integer> N Specifies the variable number of the
variable representing the “Node” value in
finite-element data. The NV parameter is
used infrequently. It is mostly used when
the order in which nodes are listed in the
data file does not match the node
numbering desired in the plot. Refer to
Section “Finite-Element Zone Node
Variable Parameters Example” on
page 179 for an example using the NV
parameter.

CONNECTIV
ITYSHAREZ
ONE

=<zone> N Specify the number of the zone from
which the connectivity is shared. The
connectivity list (cell-basedfinite-
element only) and face-neighbors may be
shared between zones using the
CONNECTIVITYSHAREZONE
parameter in the control line of the
current zone. Alternatively, the
parameter may be used to share the
Facemap Data for face-based finite-
element zones.To use connectivity
sharing, the zone must have the same
number of points and elements (and
faces, if the zone is face-based), and be
the same zone type.

STRANDID = <integer> N Each zone can optionally specify an
integer value associating itself with a
particular strand. More than one zone can
associate itself with a particular strand
and differentiate itself from other zones
by assigning different SOLUTIONTIME
values. StrandID's must be positive
integer values greater than or equal to 1.
By convention strandID's are successive
integer values.

Keyword Syntax Required
(Y/N)

Default Notes
140

ASCII File Structure
SOLUTIONT
IME

= <double> N Specify a floating point time value
representing the solution time. Zones can
be organized together by associating
themselves to the same STRANDID.

PARENTZON
E

= <zone> N Scalar integer value representing the
relationship between this zone and its
parent. A value of zero indicates that this
zone is not associated with a parent zone.
A value greater than zero is considered
this zone's parent. A zone may not
specify itself as its own parent. With a
parent zone association, Tecplot 360 can
generate a surface streamtrace on a no-
slip boundary zone. Refer to Section 16 -
3 “Surface streamtraces on no-slip
boundaries” in the User’s Manual for
additional information.

AUXDATA NAME =
<string>

N Auxiliary data strings associated with the
current zone are specified with the
AUXDATA parameter in the control line.
This auxiliary data may be used in
dynamic text, equations, macros, or add-
ons. There may be multiple AUXDATA
parameters in the control line for a zone,
but names must be unique. NOTE: The
NAME portion of the string cannot
contain spaces.
Auxiliary data is provided as named
strings:
AUXDATA EXPERIMENTDATE
="October 13, 2007, 8 A.M."

Keyword Syntax Required
(Y/N)

Default Notes
141

ASCII Data
Data
Tecplot 360 supports the following six data types:

• DOUBLE (eight-byte floating point values).

• SINGLE (four-byte floating point values).

• LONGINT (four-byte integer values).

• SHORTINT (two-byte integer values).

• BYTE (one-byte integer values, from zero to 255).

• BIT

The arrangement of ASCII data depends upon the combination of datapacking (BLOCK or
POINT), variable location (NODAL or CELL-CENTERED). The zone type also plays a role in
that not all forms of datapacking and variable locations are supported by all zone types. In BLOCK
data, the data is arranged by variable, while in POINT data the data is arranged by point (node or
data point, depending upon the zone type). In NODAL data the variable values are defined at
every node (FE data) or point (ORDERED data). In CELLCENTERED data, the variable values
are defined at the center of every cell (ORDERED data) or element (FE data).

The available combinations of datapacking and variable location parameters are:

• Block - Nodal

• Block - Cell-centered

• Point - Nodal

The combination of POINT and CELLCENTERED is not available.
142

ASCII File Structure
BLOCK - NODAL

In block data with nodal values, the data is arranged by variable and each variable is defined at the
nodes. The data arrangement is as follows:

BLOCK - CELLCENTERED

In block data with cell-centered values, the data is arranged by variable and each variable is defined
at the center of each cell (ORDERED data) or element (FE data). The data arrangement is as fol-
lows:

A11 A12 ... A1P
A21 A22 ... A2P
.
.
.
AV1 AV2 ... AVP

where:

V = total number of nonpassive, nonshared variables
P = I * J * K (ordered zones) or NODES (FE zones)

where:

V = total number of nonpassive, nonshared variables
P = (I -1) * (J - 1) * (K -1) (ordered zones1)

or
P = ELEMENTS (FE zones)

1. For all I, J and K greater than one. When I, J or K is equal to one, a value of one is used instead of subtracting one

A11 A12 ... A1P
A21 A22 ... A2P
.
.
.
AV1 AV2 ... AVP
143

ASCII Data
POINT - NODAL

In point data, the values for all variables are given for the first point, then the second point and so
on. The variable location is always NODAL.

General Formatting Rules

The following formatting guidelines apply to all data arrangements:

• Numerical values in zone data must be separated by one or more spaces, commas, tabs,
new lines, or carriage returns.

• Blank lines are ignored.

• Integer (101325), floating point (101325.0), and exponential (1.01325E+05)
numbers are accepted.

• To repeat a particular number in the data, precede it with a repetition number as
follows: “Rep*Num,” where Rep is the repetition factor and Num is some numeric
value to be repeated. For example, you may represent 37 values of 120.5 followed by
100 values of 0.0 as follows:

37*120.5, 100*0.0

Variable Sharing

Frequently, some variables are exactly the same for a set of zones. For example, a series of zones
may contain measurement or simulation data at the same XYZ-locations, but different times. In this
case, Tecplot 360’s memory usage may be dramatically reduced by sharing the coordinate variables

A11 A12 ... A1V
A21 A22 ... A2V
.
.
.
AP1 AP2 ... APV

where:

V = total number of nonpassive, nonshared variables
P = I * J * K (ordered zones)

or
P = ELEMENTS (FE zones)
144

ASCII File Structure
between the zones. The zones that variables are shared from are specified in the VARSHARELIST
in the control line of the current zone. The format is:

VARSHARELIST=([set-of-vars]=zzz, [set-of-vars]=zzz)

where set-of-vars is the set of variables that are shared and zzz is the zone they are shared from. If
zzz is omitted, the variables are shared from the previous zone.

For example:

VARSHARELIST=([4-6,11]=3, [20-23]=1, [13,15])

specifies that variables four, five, six and 11 are shared from zone three, variables 20, 21, 22, and
23 are shared from zone one, and variables 13 and 15 are shared from the previous zone. For vari-
able sharing, ordered zones may only share with ordered zones having the same dimensions. Finite-
element zones may share with any zone having the same number of nodes (for nodal variables) or
the same number of cells (for cell-centered data).

Zone Footer
The contents required for the Zone Footer depend upon the ZONETYPE (specified in the Zone
Header).

• Ordered zones - the Zone Footer contains the Face Neighbor Connections List (if
any).

• Cell-based finite-element zones (FETRIANGLE, FEQUADILATERAL,
FETETRAHEDRAL and FEBRICK) - the Zone Footer contains Connectivity
information, followed by Face Neighbor Connections List (if any).

• Face-based finite-element zones (FEPOLYHEDRAL, FEPOLYGON) - the Zone
Footer contains Facemap Data, followed by Boundary Map Data.

Connectivity

For cell-based finite-element zones (FETRIANGLE, FEQUADILATERAL, FETETRAHEDRAL,
and FEBRICK), the nodal data is followed by the connectivity information. The connectivity list
is not preceded by a token or keyword. It is simply a list of numbers.

The connectivity list details the node numbers of all of the nodes included in each element. When
providing the connectivity list, please keep in mind the following guidelines:
145

ASCII Data
• Each row in the connectivity list corresponds to an element, where the first row
corresponds to the first element, and so forth.

• The node numbers must be provided in order, either clockwise or counter-clockwise.

• You must provide the same number of nodes as are included in an element. For
example, you must provide eight numbers for BRICK elements and three numbers for
TRIANGLE elements. If you are using repeated nodes, provide the node number of
the repeated node multiple times.

See also: “Connectivity Sharing” on page 150.

The connectivity for face-based zones (FEPOLYGON and FEPOLYHEDRAL) is defined by the
Facemap Data (refer to “Facemap Data” on page 148 for details).

Face Neighbor Connections List

For ordered zones, the data section may be followed with face neighbor connections. For cell-
based finite-element zones, the data section and connectivity list may be followed by the face
neighbor connection information.

Use face neighbors to specify connections between zones (global connections) or connections
within zones (local connections). Face neighbor connections are used by Tecplot when deriving
variables or drawing contour lines. Specifying face neighbors, typically leads to smoother connec-
tions. NOTE: face neighbors have expensive performance implications. Use face neighbors to
manually specify connections that are not defined via the connectivity list.

Face neighbor connections are defined by the FACENEIGHBORMODE and FACENEIGHBOR-
CONNECTIONS tokens along with the Face Neighbor Connections list. The FACENEIGHBOR-
MODE token is used to specify the type of face neighbor connection used. The
FACENEIGHBORCONNECTIONS token is used to define the total number of face neighbor connec-
tions included in the zone.

The nature of the data arranged in the Face Neighbor Connections list depends upon the FACE-
NEIGHBORMODE, described in the table below. To connect the cells along one edge to cells on
another edge of the same zone, use LOCAL. To connect cells of one zone to cells of another zone or
146

ASCII File Structure
zones, use GLOBAL. If the points of the cells are exactly aligned with the neighboring cell points,
use ONETOONE. If even one cell face is neighbor to two or more other cell faces, use ONETOMANY.

In this table,

• cz -the cell number in the current zone

• fz - the number of the cell face in the current zone

• nc -the cell number of the neighbor cell in the current zone

• oz - face obscuration flag (zero for face partially obscured, one for face entirely
obscured)

• nz - the number of neighboring cells for the ONETOMANY options

• ncn - the number of the nth local zone neighboring cell in the list

• zr - the remote zone number

• cr - the cell number of the neighboring cell in the remote zone

• zrn - the zone number of the nth neighboring cell in the GLOBALONETOMANY list

• crn - the cell number in the remote zone of the nth neighboring cell in the
GLOBALONETOMANY list.

Mode Number of Values Order of Data in the Face
Neighbor Connections List

LOCALONETOONE 3 cz, fz, nc

LOCALONETOMANY nz+4 cz, fz, oz, nz, nc1, nc2, ..., ncn

GLOBALONETOONE 4 cz, fz, zr, cr

GLOBALONETOMANY 2*nz+4
cz, fz, oz, nz, zrl, crl, zr2, cr2, ...,
zrn, crn
147

ASCII Data
The cz, fz combinations must be unique; multiple entries are not allowed. The face numbers for
cells in the various zone types are defined in Figure 3-1.

A connection must be specified for two matching cell faces to be effective. The nature of the Face
Neighbor Connections list depends upon its FACENEIGHBORMODE.

For example, for data with a FACENEIGHBORMODE of GLOBALONETOONE, if cell six, face two in
zone nine should be connected to cell one, face four in zone 10, the connections for zone nine must
include the line:

6 2 10 1 (cell#, face#, connecting zone#, connecting cell#)

And the connections for zone 10 must include this line:

1 4 9 6 (cell#, face#, connecting zone#, connecting cell#)

Global face neighbors are useful for telling Tecplot 360 about the connections between zones. This
could be used, for example, to smooth out the crease in Gouraud surface shading at zone bound-
aries. For cell-centered data, they can make contours and streamtraces more continuous at zone
boundaries.

Facemap Data

For face-based finite-element zones (FEPOLYGON and FEPOLYHEDRAL), the data section is
followed by the Facemap Data section. If boundary faces are used, the Facemap Data section is
followed by the Boundary Map Data data section. Otherwise, the facemap data section marks the
end of the zone record.

f1

f2
f3f4

Figure 3-1. A: Example of node and face neighbors for an fe-brick cell or IJK-ordered cell.
B: Example of node and face numbering for an IJ-ordered cell. C: example of
tetrahedron face neighbors.

A B C
148

ASCII File Structure
The face map data (in four major groupings) is defined by the following list:

1. TotalNodesInFace - A space-separated list of the total number of nodes in each face:

NodesInFace1 NodesInFace2 …NodesInFaceF

where F is equal to the total number of faces.
NOTE: The TotalNodesInFace section is not used for polygonal zones, as each face of
a polygon always has two nodes.

2. WhichNodesInFace - A list of the node numbers for each node in each face. Use a
separate line for each face.

Face1Node1 Face1Node2 …Face1NodeTotalNodesInFace1

Face2Node1 Face2Node2 …Face2NodeTotalNodesInFace2

...

FaceFNode1 Face2Node2 …Face2NodeTotalNodesInFaceF

3. LeftNeighborForFace - A list of left neighboring elements for each face:

LeftElementForFace1 LeftElementForFace2 ... LeftElementForFaceF

4. RightNeighborForFace -A list of right neighboring elements for each face:

RightElementForFace1 RightElementForFace2 ... RightElementForFaceF

Like the Data section of the zone record, the data
region of the Face Map section does not include
tokens. It includes a list of data. The descriptors
TotalNodesInFace, WhichNodesInFace, Left-

NeighborForFace and RightNeighborForFace should not be
included in your data file.

The face map may be shared between zones in the same file
by specifying the zone number of the sharing zone in place
of the CONNECTIVITYSHAREZONE value.
149

ASCII Data
Defining Neighboring Elements

The left element and right element are determined by the left-hand versus right-hand winding
rule. The left and right neighboring elements represent elements within the current zone, and
they are always "one-to-one". That is, each face represents a complete interface between two
elements. A negative value (-t) in either of the neighboring faces lists indicates that the neigh-
boring element(s) are defined in the boundary face section at the tth boundary face. Refer to
Section “Boundary Map Data” for details.

Any face that has no neighboring element for either its right or left adjacent element, will use a
value of zero for the element value.

See also “Connectivity Sharing” on page 150.

Boundary Map Data

If the NUMCONNECTEDBOUNDARYFACES is greater than zero, the boundary map data
section is required. The boundary map data section should immediately follow the Facemap
Data section. This section does not need to be "one-to-one". One face can link up to multiple
elements in other zones.

The number of adjacent elements is listed for each of the boundary faces. Then each boundary
face lists the element number for each of its adjacent elements. Then each boundary face lists
the zone number for each of its adjacent elements. The number of the face is not specified but
is implicit (first face listed is 1 and corresponds to -1 in the left/right neighbor list, the second
is 2 and corresponds to -2, etc.).

Connectivity Sharing

The connectivity list and face neighbor connections (for cell-based finite-element zones) or the
facemap data (for face-based finite-element zones) may be shared between zones by using the
CONNECTIVITYSHAREZONE parameter in the control line of the current zone. The format is:

CONNECTIVITYSHAREZONE=nnn

where nnn is the number of the zone that the connectivity is shared from. To use connectivity shar-
ing, the zone must have the same number of points and elements, and be the same zone type.

3- 3.3 Text Record
Text records are used to import text directly from a data file. Text can also be imported into Tecplot
360 using a macro file. You may create data files containing only text records and read them into
150

ASCII File Structure
Tecplot 360 just as you would read any other data file. You may delete and edit text originating
from data files just like text created interactively.

The text record consists of a single control line. The control line starts with the keyword TEXT and
has one or more options:

Text Record:

Toke
n

Syntax Required
(Y/N)

Default Notes

TEXT Y Keyword required to start a text record
T = <string> Y The text string is defined in the required T (text) parameter.

To include multiple lines of text in a single text record,
include \\n in the text string to indicate a new line.

ZN = <integer> N Use the ZN (zone) parameter to attach text to a specific
zone or XY mapping. For further information, see Section
23- 1.2 “Text Options” in the User’s Manual.

X = <double> Y Specify the x-origin, y-origin and z-origin of the object.
The x-origin and y-origin should be in CS (coordinatesys)
units. The z-origin of object must always in GRID units. Y = <double> Y

Z = <double> Y
R = <double> Y r-origin (in CS units) of the object
THETA = <double> Y theta-origin (in CS units) of the object
CS =

<coordinatesy
s>

N FRAME Text coordinate system. If you specify the frame
coordinate system, the values of the X (xorigin) and Y
(yorigin) parameters are in frame units; if you specify grid
coordinates, X and Y are in grid units (that is, units of the
physical coordinate system). Specify X, Y and Z for
GRID3D coordinates. For Polar Line plots, you may
specify THETA and R instead of X and Y.

A = <double> N Use the A parameter to rotate the text box at an angle
counter-clockwise from horizontal. The angle is in units of
degrees.

S = <scope> N Scope of the text box. GLOBAL scope attaches the text box
to all frames using the same data set. It is the same as
selecting the check box Show in “Like” Frames in the Text
Options dialog.

BX = <boxtype> N NOBOX Draw a box around the text string using the BX (boxtype)
parameter. The parameters BXO (boxoutlinecolor), BXM
(boxmargin), and LT (linethickness) are used if the boxtype
is HOLLOW or FILLED. The parameter BXF (boxfillcolor)
is used only if the boxtype is FILLED. The default boxtype,
NOBOX, ignores all other box parameters.

BXF = <color> N Box Fill Color; BX (boxtype) must be set to FILLED.
BXM = <double> N When BX (boxtype) is set to HOLLOW or FILLED, use the

BXM token to specify the margin around text in box as
fraction of H (text height).

BXO = <color> N When BX (boxtype) is set to HOLLOW or FILLED, use the
BXO token to specify the color of the box outline.
151

ASCII Data
LT = <double> When BX (boxtype) is set to HOLLOW or FILLED, use the
LT token to specify the thickness of the box outline.

F = N Use the F parameter to specify the font family.
C = <color> N Font color.
AN =

<textanchor>
Use the AN (textanchor) parameter to specify the position
of the anchor point relative to the text. There are nine
possible anchor positions, as shown in Figure 3-2.

LS = <double> N 1 Assign the line spacing for multi-line text using the LS
(linespacing) parameter. The default value, 1, gives single-
spacing. Use 1.5 for line-and-a-half spacing, 2 for double-
spacing, and so on.

H = <double> Specify the height, measured in the units defined by HU.
HU =

<heightunits>
Units for character heights. If the CS parameter is FRAME,
you can set HU to either FRAME or POINT. If the CS
parameter is GRID, you can set HU to either GRID or
FRAME.

MFC = <string> Attach a macro function to the text. The macro function
must be a retained macro function that was either set during
the current Tecplot session or included in the tecplot.mcr
file. Refer to Section 23 - 5 “Text and Geometry Links to
Macros” in the User’s Manual and
“$!MACROFUNCTION...$!ENDMACROFUNCTION”
in the Scripting Guide for additional information.

CLIPP
ING

= <clipping> Plot the geometry within to the viewport or the frame.

Toke
n

Syntax Required
(Y/N)

Default Notes

Left Center Right

Midleft Midcenter Midright

HeadrightHeadcenterHeadleft

Figure 3-2. Text anchor positions—values for the AN parameter.
152

ASCII File Structure
Text Record Examples
Some simple examples of text records are shown below. The first text record specifies only the
origin and the text. The next text record specifies the origin, color, font, and the text. The third text
record specifies the origin, height, box attributes, and text. Note that the control line for the text can
span multiple file lines if necessary (as in the third text record below). The last text record is an
example of using 3D text in Tecplot 360.

TEXT X=50, Y=50, T="Example Text"
TEXT X=10, Y=10, F=TIMES-BOLD, C=BLUE, T="Blue Text"
TEXT X=25, Y=90, CS=FRAME, HU=POINT, H=14,
BX=FILLED, BXF=YELLOW, BXO=BLACK, LS=1.5,
T="Box Text \\n Multi-lined text"
TEXT CS=GRID3D, X=0.23,Y=0.23,Z=0.5, T="Well 1"

3- 3.4 Geometry Record
Geometry records are used to import geometries from a data file. Geometries are line drawings that
may be boundaries, arrows, or even representations of physical structures. You may create data
files containing only geometry and text records and read them into Tecplot 360. You may delete and
edit geometries originating from data files just like the geometries that you create interactively.

The geometry record control line begins with the keyword GEOMETRY.

Geometry Record Contents:

Token Available
Values

Notes

GEOME
TRY

Keyword required to start a geometry record

T = <geomtype> Geometry type
F =

<datapacking>
Geometry data format

DT = <datatype> Data type
ZN = <integer> Attach text to a specific zone or XY mapping. For further information, see Section

23- 1.2 “Text Options” in the User’s Manual.
X = <double> Specify the x-origin, y-origin and z-origin of the object. The x-origin and y-origin

should be in CS (coordinatesys) units. The z-origin of object is for LINE3D
geometries only and must always in GRID units. Refer to Section “Origin
positions” on page 155 for additional information regarding the origin location for
each type of geometry.

Y = <double>
Z = <double>

R = <double> Specify the r-origin and theta-origin of the object. The origins should be in CS
units. Refer to Section “Origin positions” on page 155 for additional
information.THETA = <double>
153

ASCII Data
CS =
<coordinatesys
>

Geometry coordinate system. If you specify the frame coordinate system, the
values of the X (xorigin) and Y (yorigin) parameters are in frame units; if you
specify grid coordinates, X and Y are in grid units (that is, units of the physical
coordinate system). Specify X, Y and Z for GRID3D coordinates. For Polar Line
plots, you may specify THETA and R instead of X and Y.

DRAWO
RDER

= <draworder> Draw order.

S = <scope> The S (scope) parameter specifies the text scope. GLOBAL scope attaches the text
box to all frames using the same data set. It is the same as selecting the check box
Show in “Like” Frames in the Geometry Options dialog.

C = <color> Geometry outline color.
L = <linetype> Line type
PL = <double> Pattern length (in frame units).
LT = <double> Line thickness (in frame units)
EP = <integer> Number of points used to approximate circles or ellipses
FC = <color> Fill Color. Any geometry type except LINE3D may be filled with a color by

using the FC (fillcolor) parameter. Each polyline of a LINE geometry is filled
individually (by connecting the last point of the polyline with the first). Not
specifying the FC (fillcolor) parameter results in a hollow, or outlined, geometry
drawn in the color of the C (color) parameter.

AST =
<arrowheadstyl
e>

Arrowhead style

AAT =
N<arrowheadatt
ach>

Arrowhead attachment along the line geometry

ASZ = <double> Size of arrowhead in frame units
AAN = <double> Angle of arrowhead in degrees
MFC = <string> You may attach a macro function to the text with the MFC parameter. The macro

function must be a retained macro function that was either set during the current
Tecplot session or included in the tecplot.mcr file. Refer to Section 23 - 5 “Text
and Geometry Links to Macros” in the User’s Manual and
“$!MACROFUNCTION...$!ENDMACROFUNCTION” on page 185 in the
Scripting Guide for additional information.

CLIPP
ING

= <clipping> plot the geometry within the viewport or the frame.

Token Available
Values

Notes
154

ASCII File Structure
Data for Geometry Record
The control line of the geometry is followed by geometry data. For SQUARE, the geometry data
consists of just one number: the side length of the square.

For RECTANGLE, the geometry data consists of two numbers: the first is the width (horizontal axis
dimension), and the second is the height (vertical axis dimension).

For CIRCLE, the geometry data is one number: the radius. For ELLIPSE, the geometry data con-
sists of two numbers: the first is the horizontal axis length and the second is the vertical axis length.
For both circles and ellipses, you can use the EP (numellipsepts) parameter to specify the number of
points used to draw circles and ellipses. All computer-generated curves are simply collections of
very short line segments; the EP parameter allows you to control how many line segments Tecplot
360 uses to approximate circles and ellipses. The default is 72.

For LINE and LINE3D geometries, the geometry data is controlled by the F (format) parameter.
These geometries may be specified in either POINT or BLOCK format. By default, POINT format is
assumed. Each geometry is specified by the total number of polylines, up to a maximum of 50
polylines, where each polyline can have up to 32,000 points. Each polyline is defined by a number
of points and a series of XY- or XYZ- coordinate points between which the line segments are
drawn. In POINT format, the XY- or XYZ-coordinates are given together for each point. In BLOCK
format, all the X-values are listed, then all the Y-values, and (for LINE3D geometries) all the Z-
values. All coordinates are relative to the X, Y, and Z specified on the control line. You can specify
points in either single or double precision by setting the DT (datatype) parameter to either SINGLE
or DOUBLE.

Origin positions
Geometry types are selected with the T (geomtype) parameter. The available geometry types are
listed below:

• SQUARE - A square with lower left corner at X, Y.

• RECTANGLE - A rectangle with lower left corner at X, Y.

• CIRCLE - A circle centered at X, Y.

• ELLIPSE - An ellipse centered at X, Y.

• LINE - A set of 2D polylines (referred to as multi-polylines) anchored at X, Y.

• LINE3D - A set of 3D polylines (referred to as multi-polylines) anchored at X, Y, Z.
155

ASCII Data
Geometry Record Examples

• Rectangle - The following geometry record defines a rectangle of 40 width and 30
height:

GEOMETRY T=RECTANGLE
40 30 #WIDTH HEIGHT

• Circle - The following geometry record defines an origin and a red circle of 20 radius,
with an origin of (75, 75) that is filled with blue:

GEOMETRY X=75, Y=75, T=CIRCLE, C=RED, FC=BLUE,CS=FRAME
20 #RADIUS

• Polyline - The following geometry record defines an origin and two polylines, drawn
using the Custom 3 color. The first polyline is composed of three points, the second of
two points.

GEOMETRY X=50, Y=50, T=LINE, C=CUST3
2 #Number of polylines
3 #Number of points in polyline 1
0 1 #X, Y coordinates of the point 1 in polyline 1
0 0 #X, Y coordinates of the point 2 in polyline 1
2 0 #X, Y coordinates of the point 3 in polyline 1
2 #Number of points in polyline 2
0 0 #X, Y coordinates of the point 1 in polyline 2
1 2 #X, Y coordinates of the point 2 in polyline 2

In BLOCK format, the same geometry appears as:

GEOMETRY X=50, Y=50, T=LINE, C=CUST3, F=BLOCK, CS=FRAME
2 #Number of polylines
3 #Number of points in polyline 1
0 0 2 #X position of each point in polyline 1
1 0 0 #Y position of each point in polyline 1
2 #Number of points in polyline 2
0 1 #X position of each point in polyline 2
0 2 #y position of each point in polyline 2

• Ellipse - The next geometry record defines a purple ellipse with a horizontal axis
length of 20 and a vertical axis length of 10, with an origin of (10, 70), that is filled
with yellow.

GEOMETRY X=10, Y=70, T=ELLIPSE, C=PURPLE, FC=YELLOW
20 10 #Horizontal Axis, Vertical Axis
156

ASCII File Structure
• 3D polyline - The final geometry record is a 3D polyline with four points that is
composed of one polyline using the default origin of (0, 0, 0):

GEOMETRY T=LINE3D
1 #Number of polylines
4 #Number of points in polyline 1
0 0 0 #X, Y, Z coordinates of point 1
1 2 2 .
3 2 3 .
4 1 2 #X, Y, Z coordinates of point 4

In BLOCK format, this geometry record can be written as follows:

GEOMETRY T=LINE3D, F=BLOCK
1 #Number of polylines
4 #Number of points in polyline 1
0 1 3 4 #X position for each point in the polyline
0 2 2 1 #Y position for each point in the polyline
0 2 3 2 #Z position for each point in the polyline

3- 3.5 Custom Labels Record
The custom label record is an optional record used to provide custom labels for axes, the contour
legend or value labels. A single custom label record begins with the keyword CUSTOMLABELS, fol-
lowed by a series of text strings. The first custom label string corresponds to a value of one on the
axis, the next to a value of two, and so forth.

You may have up to ten custom label records in a data file. The custom label set to use is specified
via the Tecplot interface. Refer to Section 18- 6.1 “Using Custom Labels” in the User’s Manual for
details.

A simple example of a custom-label record is shown below. MON corresponds to a value of 1, TUE
corresponds to 2, WED to 3, THU to 4, and FRI to 5. Since custom labels have a wrap-around effect,
MON also corresponds to the values 6, 11, and so forth.

CUSTOMLABELS "MON", "TUE", "WED", "THU", "FRI"

You must include a data set in order to use custom
labels. You cannot use custom labels in files that
contain only text and/or geometries.
157

ASCII Data
3- 3.6 Data Set Auxiliary Data Record
There is frequently auxiliary data (or Metadata) that helps describe the data set. For example,
experimental data may have information about the facility and time at which the data was taken,
and other parameters that describe the experiment. Likewise, simulation results have auxiliary data
(such as reference quantities for non-dimensional data) needed to fully analyze and present the
results.

Auxiliary data are name/value pairs that a user can specify and then use in Tecplot 360 with
dynamic text, equations, macros, or add-ons. This data may be with respect to the data set as a
whole or it can vary from zone to zone. The ASCII file format token for specifying auxiliary data
associated with the entire data set is DATASETAUXDATA, described here. Auxiliary data for a
given variable is defined by VARAUXDATA, described in Section 3- 3.7 “Variable Auxiliary Data
Record”. Auxiliary data for a given zone is defined by the AUXDATA token within the zone
record (refer to “Zone Header” on page 138 for details).

The data set auxiliary data control line is as follows:

DATASETAUXDATA name = “value”

where name is a unique character string with no spaces. You may have multiple DATASETAUX-
DATA records. However, the value of name must be unique for each record.

Auxiliary data may be used in text, macros, equations (if it is numeric), and accessed from add-ons.
It may also be viewed directly in the AuxData page of the Data Set Information dialog.

Data Set Auxiliary Data Examples
The following auxiliary data contain flow field information that might be found in output from a
computational fluid-dynamics simulation.

DATASETAUXDATA MachNo = "1.2"
DATASETAUXDATA Alpha = "5"
DATASETAUXDATA RefTemperature = "250"
DATASETAUXDATA RefPressure = "101325"
DATASETAUXDATA Configuration = "A2 No. 3"
DATASETAUXDATA Date = "August 5, 2003"
DATASETAUXDATA Region = "NE Quadrant of Sector 47"

You may then use the numerical values in equations to modify the variables as follows:

{P} = {P_non_dim} * AuxDataSet:RefPressure

Similar principles apply when using auxiliary data in text boxes or labels.
158

ASCII File Structure
3- 3.7 Variable Auxiliary Data Record
Variable auxiliary data is added to Tecplot 360 on a per variable basis. Like dataset auxiliary data,
multiple items can be added for each variable:

VARAUXDATA 1 MyData=”Hello”
VARAUXDATA 1 MoreData=”World”
VARAUXDATA 2 MyData=”More information”
VARAUXDATA 2 MoreData=”hi mom”
VARAUXDATA 2 MyExtraData=”Some extra data”

The variable number with which the auxiliary data is associated immediately follows the
VARAUXDATA record. Also note that the data associated with a particular auxiliary data name are
unique for each variable. Therefore the same named item can be added to each variable if desired.
Conversely a particular auxiliary data item can be added to only one variable. NOTE: The name of
an auxiliary data record cannot contain spaces.

3- 3.8 ASCII Data File Parameter Assignment Values
The following parameters assignment values are shared among the following types of ASCII file
records: Zone Record, Text Record, and/or Geometry Record. Refer to those sections for details.

<arrowheadstyle> PLAIN, HOLLOW, FILLED

<arrowheadattach> NONE, BEGINNING, END, BOTH

<boxtype> NOBOX, HOLLOW ,FILLED

<clipping> CLIPTOVIEWPORT, CLIPTOFRAME

<color> BLACK, RED, GREEN, BLUE, CYAN, YELLOW, PURPLE, WHITE, CUST1,
..., CUST8

<coordinatesys> FRAME, GRID, GRID3D

<datapacking> BLOCK, POINT

<datatype> SINGLE, DOUBLE

<draworder> AFTERDATA,BEFOREDATA

 HELV, HELV-BOLD, TIMES, TIMES-ITALIC, TIMES-BOLD, TIMES-ITALIC-
BOLD, COURIER, COURIER-BOLD, GREEK, MATH, USER-DEF

<geomtype> LINE, SQUARE, RECTANGLE, CIRCLE, ELLIPSE

<heightunits> In FRAME coordinatesys either FRAME or POINT; in GRID
coordinatesys either GRID or FRAME.

<linetype> SOLID, DASHED, DASHDOT, DOTTED, LONGDASH, DASHDOTDOT

<scope> GLOBAL, LOCAL
159

ASCII Data
3 - 4 Ordered Data
For ordered data, the numerical values in the zone data must be in either POINT or BLOCK format,
specified by the DATAPACKING parameter.

3- 4.1 I-Ordered Data
I-ordered data has only one index, the I-index. This type of data is typically used for XY-plots,
scatter plots, and irregular (random) data for triangulation or for interpolation into an IJ-or IJK-
ordered zone within Tecplot 360.

In I-ordered data, the I-index varies from one to IMax. The total number of data points is IMax. For
zones with only nodal variables, the total number of values in the zone data is IMax*N (where N is
the number of variables). For a mixture of nodal and cell-centered variables, the number of values
in the zone data is IMax*Nn+(IMax-1)*Nc, where Nn is the number of nodal variables and Nc is
the number of cell-centered variables. For data in POINT format, IMax is calculated by Tecplot 360
from the zone data if it is not explicitly set by the zone control line (using the I-parameter).

3- 4.2 IJ-Ordered Data
IJ-ordered data has two indices: I and J. IJ-ordered data is typically used for 2D and 3D surface
mesh, contour, vector, and shade plots, but it can also be used to plot families of lines in XY-plots.
Refer to Chapter 3 “Data Structure” in the User’s Manual for more information on data structure. In
IJ-ordered data, the I-index varies from one to IMax, and the J-index varies from one to JMax. The
total number of data points (nodes) is IMax*JMax. For zones with only nodal variables, the total
number of numerical values in the zone data is IMax*JMax*N (where N is the number of vari-
ables). For a mixture of nodal and cell-centered variables, the number of values in the zone data is
IMax*JMax*Nn+(IMax-1)*(JMax-1)*Nc, where Nn is the number of nodal variables and Nc is the
number of cell-centered variables. Both IMax and JMax must be specified in the zone control line
(with the I and J parameters). The I- and J-indices should not be confused with the X- and Y-coor-
dinates—on occasions the two may coincide, but this is not the typical case.

<textanchor> LEFT, CENTER, RIGHT, MIDLEFT, MIDCENTER, MIDRIGHT, HEADLEFT,
HEADCENTER, HEADRIGHT

<varlocation> NODAL, CELLCENTERED

<zone> zone number to which this item is assigned (0=all)

<zonetype> ORDERED, FELINESEG, FETRIANGLE, FEQUADRILATERAL, FETETRAHEDRON,
FEBRICK, FEPOLYGON or FEPOLYHEDRAL
160

Ordered Data
The I-index varies the fastest. That is, when you write programs to print IJ-ordered data, the I-index
is the inner loop and the J-index is the outer loop. Note the similarity between I-ordered data and IJ-
ordered data with JMax=1.

3- 4.3 IJK-Ordered Data
IJK-ordered data has three indices: I, J, and K. This type of data is typically used for 3D volume
plots, although planes of the data can be used for 2D and 3D surface plots. See Section 3 - 1
“Ordered Data” in the User’s Manual for more information.

In IJK-ordered data, the I-index varies from one to IMax, the J-index varies from one to JMax, and
the K-index varies from one to KMax. The total number of data points (nodes) is
IMax*JMax*KMax. For zones with only nodal variables the total number of values in the zone data
is IMax*JMax*KMax*N, where N is the number of variables. For a mixture of nodal and cell-cen-
tered variables, the number of values in the zone data is IMax*JMax*KMax*Nn+(IMax-1)*(JMax-
1)*(KMax-1)*Nc, where Nn is the number of nodal variables and Nc is the number of cell-centered
variables. The three indices, IMax, JMax, and KMax, must be specified in the zone control line
using the I-, J-, and K-parameters.

The I-index varies the fastest; the J-index the next fastest; the K-index the slowest. If you write a
program to print IJK-ordered data, the I-index is the inner loop, the K-index is the outer loop, and
the J-index is the loop in between. Note the similarity between IJ-ordered data and IJK-ordered data
with KMax=1.

3- 4.4 Ordered Data Examples
The following examples are provided for your reference:

• I-Ordered Data - Simple example

• IJ-Ordered Data - Simple Example

• IJK-Ordered Data - Simple Example

• Multi-Zone XY Line Plot

• Multi-Zone XY Line Plot with Variable Sharing Example

• Cell-Centered Data

• Two-Dimensional Field Plots

• Three-Dimensional Field Plots

• Polygonal - simple example

• Polyhedral - complex example
161

ASCII Data
I-Ordered Data - Simple example
This data set is plotted in Figure 3-3; each data point is labeled with its I-index.

In this example, each column of zone data corresponds to a data point; each row to a variable.

VARIABLES = "X", "Y"
ZONE I=5, DATAPACKING=BLOCK
2 3 5 6 7
4 9 25 36 49

In BLOCK format all values of each variable are listed, one variable at a time.

FORTRAN Code

The following sample FORTRAN code shows how to create I-ordered data in BLOCK format:

INTEGER VAR
.
.
.
WRITE (*,*) ´ZONE DATAPACKING=BLOCK, I=´, IMAX
DO 1 VAR=1,NUMVAR
DO 1 I=1,IMAX
 WRITE (*,*) ARRAY(VAR,I)

1 CONTINUE

1 2 3 4 5 6 7 8X
0

10

20

30

40

50

Y

1
2

3

4

5

Figure 3-3. An I-ordered data set.
162

Ordered Data
IJ-Ordered Data - Simple Example
There are four variables (X, Y, Temperature, Pressure) and six data points.

 In this example, each column of data corresponds to a data point; each row to a variable.

VARIABLES = "X", "Y", "Temperature", "Pressure"
ZONE I=2, J=3, DATAPACKING=BLOCK
3 7 2 6 1 5
0 2 4 6 8 9
0 0 1 0 1 1
50 43 42 37 30 21

In BLOCK format, all IMax*JMax values of each variable are listed, one variable at a time. Within
each variable block, all the values of a variable at each data point are listed.

FORTRAN Code

The following sample FORTRAN code shows how to create IJ-ordered data in BLOCK format:

 INTEGER VAR
.
.
.
WRITE (*,*) ´ZONE DATAPACKING=BLOCK, I=´, IMAX, ´, J=´, JMAX

0 2 4 6 8
X

0

1

2

3

4

5

6

7

8

9

Y

1,1

2,1

1,2

2,2

1,3
2,3

Figure 3-4. An IJ-ordered data set.
163

ASCII Data
DO 1 VAR=1,NUMVAR
 DO 1 J=1,JMAX
 DO 1 I=1,IMAX
 WRITE (*,*) ARRAY(VAR,I,J)
1 CONTINUE

IJK-Ordered Data - Simple Example
An example of IJK-ordered data in BLOCK format is listed below. There are four variables (X, Y, Z,
Temperature) and twelve data points.This data is plotted in Figure 3-5; each data point is labeled
with its IJK-index.

For this example, each column of data corresponds to a data point; each row to a variable.

VARIABLES = "X" "Y" "Z" "Temp"
ZONE I=3, J=2, K=2, DATAPACKING=BLOCK
 0 3 6 0 3 6 0 3 6 0 3 6
 0 0 0 6 6 6 0 0 0 6 6 6
 0 1 3 3 4 6 8 9 11 11 12 14
 0 5 10 10 41 72 0 29 66 66 130 169

0

5

10

Z

0

2

4

6

X

0
5

Y

3,2,1

3,2,2

2,2,1

3,1,1

2,2,2

3,1,2

1,2,1
2,1,1

1,2,2
2,1,2

1,1,1

1,1,2

X

Y

Z

Figure 3-5. An IJK-ordered data set.
164

Ordered Data
FORTRAN Code

The following sample FORTRAN code shows how to create an IJK-ordered zone in BLOCK format:

 INTEGER VAR
 .
 .
 .
 .
 WRITE (*,*) ´ZONE DATAPACKING=BLOCK, I=´, IMAX, ´, J=´, JMAX, ´, K=´, KMAX
 DO 1 VAR=1,NUMVAR
 DO 1 K=1,KMAX
 DO 1 J=1,JMAX
 DO 1 I=1,IMAX
 WRITE (*,*) ARRAY(VAR,I,J,K)
1 CONTINUE

Multi-Zone XY Line Plot
The two tables below show the values of pressure and temperature measured at four locations on
some object at two different times. The four locations are different for each time measurement.

For this case, we want to set up two zones in the data file, one for each time value. Each zone has
three variables (Position, Temperature, and Pressure) and four data points (one for each
location). This means that IMax=4 for each zone. We include a text record (discussed in Section 3-

Time = 0.0 seconds:

Position Temperature Pressure

71.30 563.7 101362.5

86.70 556.7 101349.6

103.1 540.8 101345.4

124.4 449.2 101345.2

Time = 0.1 seconds:

Position Temperature Pressure

71.31 564.9 101362.1

84.42 553.1 101348.9

103.1 540.5 101344.0

124.8 458.5 101342.2
165

ASCII Data
3.3 “Text Record”) to add a title to the plot. The plot shown in Figure 3-6 can be produced from this
file.

All of the values for the first variable (Position) at each data point are listed first, then all of the
values for the second variable (Temperature) at each data point, and so forth.

TITLE = "Example: Multi-Zone XY Line Plot"
VARIABLES = "Position", "Temperature", "Pressure"
ZONE DATAPACKING=BLOCK, T="0.0 seconds", I=4
71.30 86.70 103.1 124.4
563.7 556.7 540.8 449.2
101362.5 101349.6 101345.4 101345.2
ZONE DATAPACKING=BLOCK, T="0.1 seconds", I=4
71.31 84.42 103.1 124.8
564.9 553.1 540.5 458.5
101362.1 101348.9 101344.0 101342.2
TEXT CS=FRAME, HU=POINT, X=16, Y=90, H=28, T="SAMPLE CASE"

Multi-Zone XY Line Plot with Variable Sharing Example
If the data from the section above was taken at the same position for both times, variable sharing
could reduce memory usage and file size. That file appears as:

TITLE = "Example: Multi-Zone XY Line Plot with Variable Sharing"
VARIABLES = "Position", "Temperature", "Pressure"

80 90 100 110 120
Position

450

460

470

480

490

500

510

520

530

540

550

560

T
em

pe
ra

tu
re

101345

101350

101355

101360

P
re

ss
ur

e

Temperature (0.0 seconds)
Pressure (0.0 seconds)
Temperature (0.1 seconds)
Pressure (0.1 seconds)

SAMPLE CASE

Figure 3-6. A multi-zone XY Line plot.
166

Ordered Data
ZONE T="0.0 seconds", I=4
71.30 563.7 101362.5
86.70 556.7 101349.6
103.1 540.8 101345.4
124.4 449.2 101345.2
ZONE T="0.1 seconds", I=4
VARSHARELIST=([1]=1) #share variable 1 from zone 1
564.9 101362.1
553.1 101348.9
540.5 101344.0
458.5 101342.2
TEXT CS=FRAME, HU=POINT, X=16, Y=90, H=28, T="SAMPLE VARIABLE SHARING CASE"

Cell-Centered Data
An example of IJ-ordered data with cell-centered variables might include four variables (X, Y,
Temperature, Pressure), nine data points, and four cells where Temperature and Pres-
sure are cell-centered.

VARIABLES = "X", "Y", "Temperature", "Pressure"
ZONE I=3, J=3, DATAPACKING=BLOCK, VARLOCATION=([3,4]=CELLCENTERED)
3 7 11 2 6 10 1 5 9
0 2 3 4 6 8 8 9 10
0 2 1 3

1,1

2,1

1,2

2,2

1,1

2,1

3,1

1,2

2,2

3,21,3

2,3

3,3

X

Y

2 4 6 8 10 12

0

2

4

6

8

10

Figure 3-7. An IJ-ordered data set with cell-centered data.
167

ASCII Data
45 60 35 70

The nodal variables of X and Y are specified at all nine nodes, and the values of cell-centered vari-
ables are specified at the four cells [(IMax-1)*(JMax-1)]. Zones with cell-centered data must
have DATAPACKING=BLOCK.

Two-Dimensional Field Plots
A 2D field plot typically uses an IJ-ordered or finite-element surface data set. However, any data
structure can be viewed as a 2D field plot, by simply selecting “2D Cartesian” from the plot-type
menu in the Sidebar.

An IJ-ordered data file has the basic structure shown below:

TITLE = "Example: Multi-Zone 2D Plot"
VARIABLES = "X", "Y", "Press", "Temp", "Vel"
ZONE T="BIG ZONE", I=3, J=3, DATAPACKING=POINT
1.0 2.0 100.0 50.0 1.0
1.0 3.0 95.0 50.0 1.00
1.0 4.0 90.0 50.0 0.90
2.0 2.0 91.0 40.0 0.90
2.0 3.0 85.0 40.0 0.90
2.0 4.0 80.0 40.0 0.80
3.0 2.0 89.0 35.0 0.85
3.0 3.0 83.0 35.0 0.80
3.0 4.0 79.0 35.0 0.80
ZONE T="SMALL ZONE", I=3, J=2, DATAPACKING=POINT
3.0 2.0 89.0 35.0 0.85
3.5 2.0 80.0 35.0 0.85
4.0 2.0 78.0 35.0 0.80
3.0 3.0 83.0 35.0 0.80
3.5 3.0 80.0 35.0 0.85
4.0 3.0 77.0 33.0 0.78

This data file has two zones and five variables, and is included with Tecplot 360 as the file exam-
ples/dat/multzn2d.dat. The first zone has nine data points arranged in a three-by-three grid
(I=3, J=3). Each row of each zone represents one data point, where each column corresponds to the
value of each variable for a given data point, i.e. X = 1.0, Y = 2.0, Press = 100.0, Temp = 50.0, and
Vel=- 1.0 for data point one in zone one (Big Zone).

Similarly, the second zone (Small Zone) has six data points in a three-by-two mesh (I=3, J=2).
Reading this data file yields the mesh plot shown in Figure 3-13.
168

Ordered Data
Refer to Section “Two-Dimensional Field Plots” on page 177 for an presentation of the same data
in finite-element format.

Three-Dimensional Field Plots
IJK-ordered data sets have the general form shown below:

TITLE = "Example: Simple 3D Volume Data"
VARIABLES = "X", "Y", "Z", "Density"
ZONE I=3, J=4, K=3, DATAPACKING=POINT
1.0 2.0 1.1 2.21
2.0 2.1 1.2 5.05
3.0 2.2 1.1 7.16
1.0 3.0 1.2 3.66
...

The complete ASCII data file is included with Tecplot 360 as simp3dpt.dat (POINT format),
and in block format as simp3dbk.dat. When you read either of these files into Tecplot 360, the
plot will appear as shown in Figure 3-8.

1

1.5

2

2.5

3

3.5

4

Z

1

1.5

2

2.5

3

3.5

4

X

2

2.5

3

3.5

4

4.5

5

5.5

6

Y

X Y

Z

Figure 3-8. Plot of a 3D volume.
169

ASCII Data
3 - 5 Finite-Element Data
The zone header for a finite-element zones lists the zone type, along with the number of nodes, ele-
ments and faces included in the zone. The following zone types are available for finite-element
data:

• FELINESEG - FE line segments zones contain one-dimensional finite-element zones.
For the line segment element type, each line of the connectivity list contains two node
numbers that define a linear element.

• FETRIANGLE - FE triangular zones contain two-dimensional finite-elements
defined by three nodes. For the triangle element type, each line of the connectivity list
contains three node numbers that define a triangular element.

• FEQUADRILATERAL - FE quadrilateral zones contain two-dimensional elements
defined by four nodes. For the quadrilateral element type, each line of the connectivity
list contains four node numbers that define a quadrilateral element.

• FEPOLYGON - FE polygonal zones contain two-dimensional elements defined by a
varying number of nodes (three or greater).

• FETETRAHEDRON - FE tetrahedral zones contain three-dimensional elements
defined by four nodes.

• FEBRICK - FE brick zones contain three-dimensional elements defined by eight
nodes. Tecplot 360 divides the eight nodes into two groups of four; nodes N1M, N2M,
N3M, and N4M make up the first group, and N5M, N6M, N7M, and N8M make up the
second group (where N# is the node number and M is the element number). Each node
is connected to two nodes within its group and the node in the corresponding position
in the other group. For example, N1M is connected to N2M and N4M in its own group,
and to N5M in the second group.

If you need to mix quadrilateral and triangle ele-
ments, either use the polygonal zone type or use the
quadrilateral element type with node numbers
repeated to form triangles.
170

Finite-Element Data
To create elements with fewer than eight nodes, repeat nodes as necessary, keeping in
mind the basic brick connectivity just described. Figure 3-9 shows the basic brick con-
nectivity. For example, to create a tetrahedron, you can set N3M=N4M and
N5M=N6M=N7M=N8M. To create a quadrilateral-based pyramid, you can set
N5M=N6M=N7M=N8M.

• FEPOLYHEDRAL - FE polyhedral zones contain elements with a varying number
of faces. Each element has at least four faces. The faces are defined by any number of
nodes (with a minimum of three nodes in each face).

Refer to Section 3- 3.2 “Zone Record” for a complete list of the tokens included in the zone header.

After the zone header, the nodal data is listed. The nodal data contains the value of each variable
for each node or element. Refer to Section “Data” on page 142 for details on arranging the data.
The information following the nodal data is dependent upon the zone type.

For cell-based zone types (FETRIANGLE, FEQUADILATERAL, FETETRAHEDRON, and FEBRICK),
the nodal data is followed by the connectivity section. The connectivity section describes arrange-
ment of cells, relative to one another. There must be numelements lines in the second section; each
line defines one element. The number of nodes per line in the connectivity list depends on the
element type specified in the zone control line (ZONETYPE parameter). For example, ZONE-
TYPE=FETRIANGLE has three numbers per line in the connectivity list. If nodes five, seven, and
eight are connected, one line reads: 5 7 8. Refer to Section “Connectivity” on page 145 for
details. You may also define Face Neighbors following the connectivity list. Refer to Section
“Face Neighbor Connections List” on page 146 for details.

For face-based zone type (FEPOLYGON and FEPOLYHEDRAL), the data section (Section “Data” on
page 142) is followed by the zone footer and facemap data sections. Refer to Section “Facemap
Data” on page 148 for details.

n1 n2

n3n4

n5

n8 n7

n6

Figure 3-9. Basic brick connectivity.
171

ASCII Data
3- 5.1 Variable and Connectivity List Sharing
The VARSHARELIST in the ZONE record allows you to share variables from specified previous
zones. The CONNECTIVITYSHAREZONE parameter in the ZONE record allows you to share the
connectivity list from a specified previous zone. The following is an example to illustrate these fea-
tures. NOTE: Connectivity and/or face neighbors cannot be shared when the face neighbor mode is
set to Global.

The table below shows Cartesian coordinates X and Y of six locations, and the pressure measured
there at three different times (P1, P2, P3). The XY locations have been arranged into finite-ele-
ments.

For this case, we want to set up three zones in the data file, one for each time measurement. Each
zone has three variables: X, Y, and P. The zones are of the triangle element type, meaning that three
nodes must be used to define each element. One way to set up this data file would be to list the
complete set of values for X, Y, and P for each zone. Since the XY-coordinates are exactly the same
for all three zones, a more compact data file can be made by using the VARSHARELIST. In the data
file given below, the second and third zones have variable sharing lists that share the values of the
X- and Y-variables and the connectivity list from the first zone. As a result, the only values listed
for the second and third zones are the pressure variable values. Note that the data could easily have

X Y P1 P2 P3

-1.0 0.0 100 110 120

0.0 0.0 125 135 145

1.0 0.0 150 160 180

-0.5 0.8 150 165 175

0.5 0.8 175 185 195

0.0 1.6 200 200 200
172

Finite-Element Data
been organized in a single zone with five variables. Since blank lines are ignored in the data file,
you can embed them to improve readability. A plot of the data is shown in Figure 3-10.

TITLE = "Example: Variable and Connectivity List Sharing"
VARIABLES = "X", "Y", "P"
ZONE T="P_1", DATAPACKING=POINT, NODES=6, ELEMENTS=4, ZONETYPE=FETRIANGLE
-1.0 0.0 100
0.0 0.0 125
1.0 0.0 150
-0.5 0.8 150
0.5 0.8 175
0.0 1.6 200

1 2 4
2 5 4
3 5 2
5 6 4
ZONE T="P_2", DATAPACKING=POINT, NODES=6, ELEMENTS=4, ZONETYPE=FETRIANGLE,
VARSHARELIST = ([1, 2]=1), CONNECTIVITYSHAREZONE = 1
110 135 160 165 185 200

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

Mesh

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

188.75
177.5
166.25
155
143.75
132.5
121.25
110
98.75
87.5
76.25
65
53.75
42.5
31.25

Pressure 3

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

188.75
177.5
166.25
155
143.75
132.5
121.25
110
98.75
87.5
76.25
65
53.75
42.5
31.25

Pressure 2

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

188.75
177.5
166.25
155
143.75
132.5
121.25
110
98.75
87.5
76.25
65
53.75
42.5
31.25

Pressure 1

Figure 3-10. A plot of finite-element zones.
173

ASCII Data
ZONE T="P_3", DATAPACKING=POINT, NODES=6, ELEMENTS=4, ZONETYPE=FETRIANGLE,
VARSHARELIST = ([1, 2]=1), CONNECTIVITYSHAREZONE = 1
120 145 180 175 195 200

3- 5.2 Finite-Element Data Set Examples
Creating a finite-element data set is generally more complicated than creating a similar-sized
ordered data set1. In addition to specifying all the data points, you must also specify the connectiv-
ity list. Consider the data shown in Table 3 - 2.

You can create a POINT Tecplot 360 data file for this data set as follows (a 2D mesh plot of this
data set is shown in Figure 3-11):

TITLE = "Example: 2D Finite-Element Data"
VARIABLES = "X", "Y", "P", "T"
ZONE NODES=8, ELEMENTS=4, DATAPACKING=POINT, ZONETYPE=FEQUADRILATERAL
0.0 1.0 100.0 1.6
1.0 1.0 150.0 1.5
3.0 1.0 300.0 2.0
0.0 0.0 50.0 1.0
1.0 0.0 100.0 1.4
3.0 0.0 200.0 2.
4.0 0.0 400.0 3.0

1. Background information for FE data sets is provided in Section 3 - 2 “Finite-Element Data” in the User’s Manual.

Table 3 - 2: finite-element Data

Node X Y P T

A 0.0 1.0 100.0 1.6

B 1.0 1.0 150.0 1.5

C 3.0 1.0 300.0 2.0

D 0.0 0.0 50.0 1.0

E 1.0 0.0 100.0 1.4

F 3.0 0.0 200.0 2.2

G 4.0 0.0 400.0 3.0

H 2.0 2.0 280.0 1.9
174

Finite-Element Data
2.0 2.0 280.0 1.9
1 2 5 4
2 3 6 5
6 7 3 3
3 2 8 8

The ZONE record describes completely the form and format of the data set: there are eight nodes,
indicated by the parameter NODES=8; four elements, indicated by the parameter ELEMENTS=4, and
the elements are all quadrilaterals, as indicated by the parameter ZONETYPE=FEQUADRILATERAL.

The same data file can be written more compactly in BLOCK format as follows:

TITLE = "Example: 2D Finite-Element Data"
VARIABLES = "X", "Y", "P", "T"
ZONE NODES=8, ELEMENTS=4, DATAPACKING=BLOCK, ZONETYPE=FEQUADRILATERAL
0.0 1.0 3.0 0.0 1.0 3.0 4.0 2.0
1.0 1.0 1.0 0.0 0.0 0.0 0.0 2.0
100.0 150.0 300.0 50.0 100.0 200.0 400.0 280.0
1.6 1.5 2.0 1.0 1.4 2.2 3.0 1.9
1 2 5 4
2 3 6 5
6 7 3 3
3 2 8 8

X

Y

1 2 3 4

0.5

1

1.5

2

D

A

GF

C

H

E

B

Figure 3-11. A mesh plot of 2D finite-element data.
175

ASCII Data
In BLOCK format, all values for a single variable are written in a single block. The length of the
block is the number of data points in the zone. In POINT format, all variables for a single data point
are written in a block, with the length of the block equal to the number of variables.

You can change the connectivity list to obtain a different mesh for the same data points. In the
above example, substituting the following connectivity list yields the five-element mesh shown in
Figure 3-12. (You must also change the ELEMENTS parameter in the zone control line to specify
five elements.)

1 2 4 4
4 2 3 5
5 3 6 6
6 7 3 3
3 2 8 8

The connectivity list is the same for both
POINT and BLOCK formats.

Figure 3-12. Finite-element data of Figure 3-11 with a different connectivity list
176

Finite-Element Data
Two-Dimensional Field Plots
A 2D finite-element data file is shown below (included in your Tecplot 360 distribution as exam-
ples/dat/2dfed.dat):.

TITLE = "Example: 2D Finite-Element Data"
VARIABLES = "X", "Y", "P", "T"
ZONE NODES=8, ELEMENTS=4, DATAPACKING=POINT, ZONETYPE=FEQUADRILATERAL
0.0 1.0 75.0 1.6
1.0 1.0 100.0 1.5
3.0 1.0 300.0 2.0
0.0 0.0 50.0 1.0
1.0 0.0 100.0 1.4
3.0 0.0 200.0 2.2
4.0 0.0 400.0 3.0
2.0 2.0 280.0 1.9
1 2 5 4
2 3 6 5
6 7 3 3
3 2 8 8

Figure 3-13. A 2D field plot.
177

ASCII Data
The above finite-element data file has eight nodes (the first eight rows of the zone) and four ele-
ments (the last four rows of the zone). Each row in the node matrix represents a given node. Each
column in the row matrix corresponds to the value of each variable at a given node. The order of
the variables definition correlates to the order the variables are named in the data set, i.e. for node
one, X = 0.0, Y=1.0, P = 75.0 and T = 1.6. The element matrix defines the connectivity of the
nodes, i.e. element one is composed of nodes one, two, five and four.

Please refer to Chapter 3 “Data Structure” in the User’s Manual for information on ordered and FE
data sets.

Triangle Data in BLOCK Format Example
An example of triangle element type finite-element data is listed below. There are two variables (X,
Y) and five data points. This data set is plotted in Figure 3-14. Each data point is labeled with its
node number.

In this example, each column of the data section corresponds to a node and each row to a variable.
Each row of the connectivity list corresponds to a triangular element and each column specifies a
node number.

VARIABLES = "X", "Y"
ZONE NODES=5, ELEMENTS=3, DATAPACKING=BLOCK, ZONETYPE=FETRIANGLE
1.0 2.0 2.5 3.5 4.0

0 1 2 3 4 5
X

1

2

3

4

5

Y

1

2

3

4

5

Figure 3-14. A finite-element triangle data set.
178

Finite-Element Data
1.0 3.0 1.0 5.0 1.0
1 2 3
3 2 4
3 5 4

FORTRAN Code

This FORTRAN code creates triangle element type finite-element data in BLOCK format:

 INTEGER VAR
 .
 .
 WRITE (*,*) ´ZONE DATAPACKING=BLOCK, ZONETYPE=FETRIANGLE,NODES=´,NNODES,
&´ ,ELEMENTS=´,NELEM
 DO 1 VAR=1,NUMVAR
 DO 1 NODES=1,NNODES
 WRITE(*,*) VARRAY(VAR,NODES)
1 CONTINUE
 DO 2 M=1,NELEM
 DO 2 L=1,3
 WRITE (*,*) NDCNCT(M,L)
2 CONTINUE

Finite-Element Zone Node Variable Parameters Example
The node variable parameter allows setting of the connectivity to match the value of the selected
node variable. In the example below, the files appear to be identical in Tecplot 360, although the
connectivity list has changed to reflect the values of the node order. Notice that the index value of
the nodes is not changed by the node variable value.

The original data set:

TITLE = "Data with original node ordering"
VARIABLES = "X" "Y"
ZONE T="Triangulation"
 NODES=6, ELEMENTS=5,DATAPACKING=POINT, ZONETYPE=FETRIANGLE
DT=(SINGLE SINGLE)
 2.00E+000 3.00E+000
 2.20E+000 3.10E+000
 3.10E+000 4.20E+000
 2.80E+000 3.50E+000
 2.40E+000 2.10E+000
179

ASCII Data
 4.30E+000 3.20E+000
 1 2 5
 6 4 3
 5 4 6
 2 3 4
 5 2 4

The data set with the nodes re-ordered for connectivity:

TITLE = "Data with modified node ordering"
VARIABLES = "X" "Y" "Node-Order"
ZONE T="Triangulation"
 NODES=6, NV = 3, ELEMENTS=5,DATAPACKING=POINT, ZONETYPE=FETRIANGLE
DT=(SINGLE SINGLE)
 2.00E+000 3.00E+000 5
 2.20E+000 3.10E+000 4
 3.10E+000 4.20E+000 1
 2.80E+000 3.50E+000 2
 2.40E+000 2.10E+000 6
 4.30E+000 3.20E+000 3
 5 4 6
 3 2 1
 6 2 3
 4 1 2
 6 4 2

FE surface data
Finite-element surface data specify node locations in three dimensions. Consider the data in Table 3
- 3. Locations are listed for eleven nodes, each having only the three spatial variables X, Y, and Z.
We would like to create an finite-element surface zone with this data set, where some of the ele-
ments are triangles and some are quadrilaterals. All the elements could be organized into one zone
of element type Quadrilateral. However, as an illustration of creating 3D surface data, create three
zones: one triangular, one quadrilateral, and one a mixture (using quadrilaterals with repeated
nodes for the triangles).

Table 3 - 3: Data set with eleven nodes and three variables.

X Y Z

0.0 0.0 1.0

0.0 0.0 -2.0
180

Finite-Element Data
A Tecplot 360 data file for the data in Table 3 - 3 is shown below in POINT format and plotted in
Figure 3-15:

TITLE = "Example: 3D FE-SURFACE ZONES"
VARIABLES = "X", "Y", "Z"
ZONE T="TRIANGLES", NODES=5, ELEMENTS=4, DATAPACKING=POINT,
ZONETYPE=FETRIANGLE
0.0 0.0 1.0
-1.0 -1.0 0.0
-1.0 1.0 0.0
1.0 1.0 0.0
1.0 -1.0 0.0
1 2 3
1 3 4
1 4 5
1 5 2
ZONE T="PURE-QUADS", NODES=8, ELEMENTS=4, DATAPACKING=POINT,

ZONETYPE=FEQUADRILATERAL
-1.0 -1.0 0.0
-1.0 1.0 0.0
1.0 1.0 0.0
1.0 -1.0 0.0
-1.0 -1.0 -1.0
-1.0 1.0 -1.0

1.0 0.0 -2.0

1.0 1.0 0.0

1.0 1.0 -1.0

1.0 -1.0 0.0

1.0 -1.0 -1.0

-1.0 1.0 0.0

-1.0 1.0 -1.0

-1.0 -1.0 0.0

-1.0 -1.0 -1.0

Table 3 - 3: Data set with eleven nodes and three variables.

X Y Z
181

ASCII Data
1.0 1.0 -1.0
1.0 -1.0 -1.0
1 5 6 2
2 6 7 3
3 7 8 4
4 8 5 1
ZONE T="MIXED", NODES=6, ELEMENTS=4, DATAPACKING=POINT,
ZONETYPE=FEQUADRILATERAL
-1.0 -1.0 -1.0
-1.0 1.0 -1.0
1.0 1.0 -1.0
1.0 -1.0 -1.0
0.0 0.0 -2.0
1.0 0.0 -2.0
1 5 2 2
2 5 6 3
3 4 6 6
4 1 5 6

FE Volume Data Files
Finite-element volume data in Tecplot 360 is constructed from either tetrahedra having four nodes
or bricks having eight nodes. Bricks are more flexible, because they can be used (through the use of

-2

-1

0

1

Z

-1
0

1 X
-1 -0.5 0 0.5 1

Y

X Y

Z

Figure 3-15. Three-dimensional mesh plot of
finite-element surface data.
182

Finite-Element Data
repeated nodes in the connectivity list) to construct elements with fewer than eight nodes and
combine those elements with bricks in a single zone.

Finite-Element Volume - Brick Data Set
As a simple example of finite-element volume brick data, consider the data in Table 3 - 4. The data
can be divided into five brick elements, each of which is defined by eight nodes.

In each element’s connectivity list, Tecplot 360 draws connections from each node to three other
nodes. You can think of the first four nodes in the element as the “bottom” layer of the brick, and
the second four nodes as the “top.” Within the bottom or top layer, nodes are connected cyclically
(1-2-3-4-1; 5-6-7-8-5); the layers are connected by connecting corresponding nodes (1-5; 2-6; 3-7;
4-8). Figure 3-9 illustrates this basic connectivity. When you are creating your own connectivity
lists for brick elements, you must keep this basic connectivity in mind, particularly when using
duplicate nodes to create pyramids and wedges. Tecplot 360 lets you create elements that violate
this basic connectivity, but the result will probably not be what you want.

Table 3 - 4: Finite-Element Volume - Brick Data Set. Data with 14 nodes and four variables.

X Y Z Temperature

0.0 0.0 0.0 9.5

1.0 1.0 0.0 14.5

1.0 0.0 0.0 15.0

1.0 1.0 1.0 16.0

1.0 0.0 1.0 15.5

2.0 2.0 0.0 17.0

2.0 1.0 0.0 17.0

2.0 0.0 0.0 17.5

2.0 2.0 1.0 18.5

2.0 1.0 1.0 20.0

2.0 0.0 1.0 17.5

2.0 2.0 2.0 18.0

2.0 1.0 2.0 17.5

2.0 0.0 2.0 16.5
183

ASCII Data
The data file in POINT format is included in your distribution (examples/dat/febrfep.dat) and is
shown below:

TITLE = "Example: FE-Volume Brick Data"
VARIABLES = "X", "Y", "Z", "Temperature"
ZONE NODES=14, ELEMENTS=5, DATAPACKING=POINT, ZONETYPE=FEBRICK
0.0 0.0 0.0 9.5
1.0 1.0 0.0 14.5
1.0 0.0 0.0 15.0
1.0 1.0 1.0 16.0
1.0 0.0 1.0 15.5
2.0 2.0 0.0 17.0
2.0 1.0 0.0 17.0
2.0 0.0 0.0 17.5
2.0 2.0 1.0 18.5
2.0 1.0 1.0 20.0
2.0 0.0 1.0 17.5
2.0 2.0 2.0 18.0
2.0 1.0 2.0 17.5
2.0 0.0 2.0 16.5
1 1 1 1 2 4 5 3
2 4 5 3 7 10 11 8
4 4 5 5 10 13 14 11
4 4 4 4 9 12 13 10
2 2 4 4 7 6 9 10

The same data in BLOCK format is included in your distribution (examples/dat/febrfeb.dat) and is
shown below:

TITLE = "Example: FE-Volume Brick Data"
VARIABLES = "X", "Y", "Z", "Temperature"
ZONE NODES=14, ELEMENTS=5, DATAPACKING=BLOCK, ZONETYPE=FEBRICK
0.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0.0 1.0 0.0 1.0 0.0 2.0 1.0 0.0 2.0 1.0 0.0 2.0 1.0 0.0
0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 2.0 2.0 2.0
9.5 14.5 15.0 16.0 15.5 17.0 17.0
17.5 18.5 20.0 17.5 18.0 17.5 16.5
1 1 1 1 2 4 5 3
2 4 5 3 7 10 11 8
4 4 5 5 10 13 14 11
4 4 4 4 9 12 13 102 2 4 4 7 6 9 10
184

Finite-Element Data
Figure 3-16 shows the resulting mesh plot from the data set listed in this section.

Finite-Element Volume - Tetrahedral Data Set
As a simple example of a finite-element volume data set using tetrahedral elements, consider the
data in Table 3 - 5. The data set consists of thirteen nodes, with seven variables. The nodes are to be
connected to form twenty tetrahedral elements, each with four nodes.

Table 3 - 5: Finite-Element Volume - Tetrahedral data set with 13 nodes and seven variables.

X Y Z C U V W

0 0 -95 -1 1 0 8

0 85 -42 0 -5 -3 9

81 26 -42 2 -22 80 8

50 -69 -42 -6 72 52 9

-50 -69 -42 14 67 -48 9

-81 26 -2 20 -30 -82 9

0 0 0 1 -2 -5 10

50 69 43 14 -68 48 11

81 -26 43 20 31 82 11

0

0.5

1

1.5

2

Z

0

0.5

1

1.5

2

X

0
0.5

1
1.5

2

Y

X

Y

Z

Figure 3-16. A finite-element brick zone.
185

ASCII Data
The data file in POINT format for the data in Table 3 - 5 is shown below, and plotted in Figure
3-17:

TITLE = "Example: FE-Volume Tetrahedral Data"
VARIABLES = "X", "Y", "Z", "C", "U", "V", "W"
ZONE NODES=13, ELEMENTS=20, DATAPACKING=POINT, ZONETYPE=FETETRAHEDRON
0 0 -95 -1 1 0 8
0 85 -42 0 -85 -3 9
81 26 -42 2 -22 80 8
50 -69 -42 -6 72 52 9
-50 -69 -42 14 67 -48 9
-81 26 -42 20 -30 -82 9
0 0 0 1 -2 -5 10
50 69 43 14 -68 48 11
81 -26 43 20 31 82 11
0 -85 43 0 84 3 10
-81 -26 43 2 21 -80 11
-50 69 43 -6 -71 -51 11
0 0 96 1 0 -1 12
1 2 3 7
1 3 4 7
1 4 5 7
1 5 6 7
1 6 2 7
2 8 3 7
3 9 4 7
4 10 5 7
5 11 6 7
6 12 2 7
12 2 8 7
8 3 9 7
9 4 10 7

0 -85 43 0 84 -3 10

-81 -26 43 2 21 -80 11

-50 69 43 -6 -71 -51 11

0 0 96 1 0 -1 12

Table 3 - 5: Finite-Element Volume - Tetrahedral data set with 13 nodes and seven variables.

X Y Z C U V W
186

Finite-Element Data
10 5 11 7
11 6 12 7
12 8 13 7
8 9 13 7
9 10 13 7
10 11 13 7
11 12 13 7

This data file is included in your Tecplot 360 distribution’s examples/dat directory as the file
fetetpt.dat. A block format version of the same data is included as the file fetetbk.dat.

Polygonal - simple example
A polygonal element in one zone connected to an element in another zone.

Zone
ZoneType=FEPolygon
Nodes=3

Z
X

Y

Figure 3-17. Finite-element volume tetrahedral data.
187

ASCII Data
Faces=3
Elements=1
NumConnectedBoundaryFaces=2
TotalNumBoundaryConnections=1

…variable values in block format…

#face nodes
1 2
2 3
3 1
#left elements
1 1 1
#right elements (negative indicates boundary connections)
0 -1 0
#boundary connection counts
1
#boundary connection elements
1
#boundary connection zones
2

Polyhedral - complex example
A single tetrahedron bounded on face two by zone two (elements 13 and 14) and on face three by
zone three (element 11).

Zone
ZoneType=FEPolyhedron
Nodes=4
Faces=4
Elements=1
TotalNumFaceNodes=12
NumConnectedBoundaryFaces=2
TotalNumBoundaryConnections=3

…variable values in block format…

#node count per face
3 3 3 3
#face nodes
1 2 3
1 4 2
188

ASCII Data File Conversion to Binary
2 4 3
3 4 1
#left elements (negative indicates boundary connection)
0 -1 -2 0
#right elements
1 1 1 1
#boundary connection counts
2 1
#boundary connection elements
13 14 11
#boundary connection zones
2 2 3

3 - 6 ASCII Data File Conversion to Binary
Although Tecplot 360 can read and write ASCII or binary data files, binary data files are more
compact and are read into Tecplot 360 much more quickly. Your Tecplot 360 distribution includes
Preplot, which converts ASCII to binary data files. You can also use Preplot to debug ASCII data
files that Tecplot 360 cannot read.

3- 6.1 Preplot Options
To use Preplot, type the following command from the UNIX shell prompt, from a DOS prompt, or
using the Run command on Windows platforms:

preplot infile [outfile] [options]

where infile is the name of the ASCII data file, outfile is an optional name for the binary data file
created by Preplot, and options is a set of options from either the standard set of Preplot options or
from a special set of options for reading PLOT3D format files. If outfile is not specified, the binary
data file has the same base name as the infile with a .plt extension. You may use a minus sign (“-
”) in place of either the infile or outfile to specify standard input or standard output, respectively.

Any or all of -iset, -jset, and -kset can be set for each zone, but only one of each per zone.

For more Preplot command lines, see Section B - 4 “Preplot” in the User’s Manual.

3- 6.2 Preplot Examples
If you have an ASCII file named dset.dat, you can create a binary data file called dset.plt
with the following Preplot command:

preplot dset.dat dset.plt
189

ASCII Data
By default, Preplot looks for files with the .dat extension, and creates binary files with the .plt
extension. Thus, either of the following commands is equivalent to the above command:

preplot dset
preplot dset.dat

Preplot checks the input ASCII data file for errors such as illegal format, numbers too small or too
large, the wrong number of values in a data block, and illegal finite-element node numbers. If
Preplot finds an error, it issues a message displaying the line and column where the error was first
noticed. This is only an indication of where the error was detected; the actual error may be in the
preceding columns or lines.

If Preplot encounters an error, you may want to set the debug option to get more information about
the events leading up to the error:

preplot dset.dat -d

You can set the flag to -d2, or -d3, or -d4, and so forth, to obtain more detailed information.

In the following Preplot command line, the number of points that are written to the binary data file
dset.plt is less than the number of points in the input file dset.dat:

preplot dset.dat -iset 3,6,34,2 -jset 3,1,21,1 -iset 4,4,44,5

For zone three, Preplot outputs data points with I-index starting at six and ending at 34, skipping
every other one, and J-index starting at one and ending at 21. For zone four, Preplot outputs data
points with the I-index starting at four, ending at 44, and skipping by five.

In the following Preplot command line, every other point in the I-, J-, and K-directions is written to
the binary data file:

preplot dset.dat -iset ,,,2 -jset ,,,2 -kset ,,,2

The zone, start, and end parameters are not specified, so all zones are used, starting with index one,
and ending with the maximum index. The overall effect is to reduce the number of data points by a
factor of about eight.
190

Chapter 4 Glossary
The following terms are used throughout the Data Format Guide and are included here for your
reference.

2D Plotting in two dimensions. Line plots of one or more variables (XY
and Polar Line plots) are not considered 2D.

2D Cartesian Plot A plot of some variable by location on a single plane using two axes.

3D Plotting in three dimensions. Three-dimensional plotting can be subdi-
vided into 3D surface and 3D volume.

3D Cartesian Plot A plot displaying a 3D scattering of points, surfaces, or volumes using
three orthogonal axes.

3D Surface Three-dimensional plotting confined to a surface. For example, the
surface of a wing.

3D Volume Three-dimensional plotting of data that includes interior data points of
a volume, as well as those on the surface. For example, the vector field
around a wing.

Active Zone A zone that is displayed in the current plot, as determined in the Zone
Style dialog.

ASCII Data File A data file composed of human-readable statements and numbers using
ASCII characters.

Auxiliary Data Metadata attached to zones, data sets, and frames.

Binary Data File A data file composed of machine-readable data. This type of file is cre-
ated by converting ASCII data files with Preplot, or by directly creating
them from an application.
191

Glossary
Block A data file format in which the data is listed by variable. All the point
values of the first variable are listed first, then all the point values of
the second variable, and so forth.

Boundary Cell
Faces

A set of un-blanked cell faces in a 3D volume zone which have only one
neighboring volume cell. In contrast, interior cell faces have two
neighboring volume cells, one on either side, which share the face. For
an IJK-ordered zone the boundary cell faces are on the exterior of the
zone. That is, the first and last I-planes, the first and last J-planes, and
the first and last K-planes. For a finite-element 3D volume zone,
boundary cell faces are on the exterior of the zone and the surface of
any voids within the zone.

Brick An element type of finite-element volume data composed of eight node
points arranged in a hexahedron-like format. This element type is used
in 3D volume plotting.

Cell Either an element of finite-element data, or the space contained by one
increment of each index of IJ- or IJK-ordered data.

Cell-Centered Val-
ues

Values located at the center of the cell (assumed to be the centroid).

Connectivity List The portion of a finite-element data file which defines the elements or
cells by listing the relationships between points. The number of points
per cell is determined by the element type.

Custom Labels Text strings contained within a data file or text geometry file which
define labels for your axes or contour table. You may select Custom
Labels anywhere you can choose a number format, the result is the text
strings in place of numbers. The maximum length of a custom label is
1024 characters.

Data File A file that contains data used for plotting in Tecplot.

Data Format The type of zone data as specified by the format parameter in a Tecplot
data file, such as: BLOCK or POINT.

Data Loader A Tecplot add-on which allows you to read non-Tecplot data files.

Data Point An XYZ-point at which field variables are defined.
192

Data Set A set of one or more zones. A data set may be plotted in one or more
frames. However, a single frame may only plot one data set. A data set
may be created by loading one or more data files.

Element Type The form of individual elements in a finite-element zone. There are four
types of cell-based finite-element zones: Triangle and Quadrilateral
(finite-element surface types), and Tetrahedron and Brick (finite-ele-
ment volume types). For cell-based finite-elements, the element type of
a zone determines the number of nodes per element and their orienta-
tion within an element.
There are two types of face-based finite-element zones: polygonal (2D)
and polyhedral (3D). For face-based elements, the number of nodes
per element is variable.

FE An abbreviation for finite-element, a common means of arranging data
for calculations. (Often referred to as “unordered” or “unstructured”.)

FE Surface A finite-element zone of the element type Triangle, Quadrilateral,
Polygon. These zones are used for 2D and 3D surface plots.

FE Volume A finite-element zone of the element type Tetrahedron, Brick, Polyhe-
dron. These zones are used for 3D volume plots.

Field Map A collection of zones for 2D and 3D field plots. A common style can be
easily applied to all zones in the selection.

Field Plot Includes 2D Cartesian and 3D Cartesian plot types. Generally used to
display the spacial relationship of data. Mesh, Contour, Vector, Scatter
and Shade are all considered field plots. XY and Polar Line plots and
the Sketch plot type are not field plots.

Finite-Element A type of data point ordering. Data is arranged by listing the data
points (called nodes), and then listing their relationships (called ele-
ments). The element type of the zone determines the number of nodes
which are contained in each element, as well as the exact relationship
of nodes within an element. There are several different element types
supported by Tecplot: Triangle,Quadrilateral,Tetrahedron, Brick,
Polygonal and Polyhedral. See also: Connectivity List and Node
193

Glossary
I-Ordered A type of data point ordering where each point is listed one at a time
(that is, by one index). Used mainly in XY-plots. In 2D or 3D, this type
of data point ordering is sometimes called irregular, and is only useful
for scatter plots, or for interpolating or triangulating into 2D, 3D sur-
face, or 3D volume zones. (This type of data can also be used for 2D or
3D vector plots if streamtraces are not required.)

IJ-Ordered A type of data point ordering where the points are arranged in a 2D
array used for 2D and 3D surface plotting.

IJK-Blanking A feature to include or exclude portions of an IJK-ordered zone based
on index ranges.

IJK-Ordered A type of data ordering where the points are arranged in a 3D array.
Used for 3D volume plotting as well as 2D and 3D surface plotting.

I-Plane In an ordered zone, the connected surface of all points with a constant
I-index. In reality, I-planes may be cylinders, spheres, or any other
shape.

Irregular Data Points which have no order, or at least no order which can be easily
converted to IJ- or IJK-ordering.

J-Plane In an ordered zone, the connected surface of all points with a constant
J-index. In reality, J-planes may be cylinders, spheres, or any other
shape.

K-Plane In an IJK-ordered zone, the connected surface of all points with a con-
stant K-index. In reality, K-planes may be cylinders, spheres, or any
other shape.

Macro A file containing a list of instructions, called macro commands, which
can duplicate virtually any action performed in Tecplot.

Macro Command An instruction given to Tecplot in a macro file. Macro commands
always start with a dollar sign and then an exclamation mark. For
example, $!Redraw refreshes a plot view.

Macro File A file which contains a series of macro commands. Macro files are run
from the command line, or through the Play option of the Macro sub-
menu of the File menu.

Macro Function A self-contained macro sub-routine.
194

Macro Variable A holding place for numeric values in a macro file. There are two types
of macro variables: user-defined (you set and retrieve the value), or
internal (Tecplot sets the value and you may retrieve it).

No Neighboring
Element

In polyhedral/polygonal fe data sets, the term “no neighboring ele-
ment” refers to a face that does not have a neighboring element on
either its right or left side.

Node A point in finite-element data.

Number Format The style of numbers to display for a data or axis label; exponent, inte-
ger, float, and so forth.

Ordered Data A type of data point organization which consists of a parameterized
series of points. There are seven types of ordered data: I-, J-, K-, IJ-,
JK-, IK-, and IJK-ordered. I-, IJ-, and IJK-ordered are the most com-
mon.

Polygonal A 2D, face-based finite-element type. The number of nodes per element
is variable. That is, a single polygonal zone may contain triangular,
quadrilateral, hexagonal, ..., etc. elements.

Polyhedral A 3D, face-based finite-element type. The number of nodes per element
is variable. That is, a single polyhedral zone may contain tetrahedral
and brick (and others) elements.

Point A data file format for an I-, IJ-, or IJK-ordered zone in which the data
is listed by point. All of the variable values for the first data point are
listed first, then all the variable values for the second data point, and
so forth.

Quadrilateral An element type of finite-element surface data which is composed of
four node points arranged in a quadrilateral. Used in 2D and 3D sur-
face plotting.

Sharing Variable sharing allows a single storage location to be used by more
than one party. For example, if the X-variable is shared between zones
five and seven only one storage location is created. The storage is not
freed by Tecplot until the number of parties accessing the data is
reduced to zero. Variables and connectivity information may be shared.

Tetrahedron An element type of finite-element volume data which is composed of
four node points arranged in a tetrahedron. (Used in 3D volume plot-
ting.)
195

Glossary
Triangle An element type of finite-element surface data which is composed of
three node points arranged in a triangle. (Used in 2D and 3D surface
plotting.)

Unordered or
Unorganized Data

(See Irregular Data.)

Zone A subset of a data set which is assigned certain plot types. Zones may
be activated (plotted) or deactivated (not plotted). Each zone has one
type of data ordering: I-, IJ-, IJK-, or finite-element. Zones are typi-
cally used to distinguish different portions of the data. For example,
different calculations, experimental versus theoretical results, different
time steps, or different types of objects, such as a wing surface versus a
vector field around a wing.

Zone Layers One way of displaying a 2D or 3D plot’s data set. The plot is the sum of
the active zone layers, which may include mesh, contour, vector, shade,
scatter and edge.
196

Appendix A Binary Data File Format
Refer to this section only if you wish to write your own functions. Otherwise, refer to Section 2 - 1
“Getting Started” for instructions for linking with the library provided by Tecplot, Inc.

/*
BINARY FILE FORMAT:

The binary data file format (as produced by the preplot) is described below.

The binary datafile has two main sections. A header section and a data
section.

 +----------------+
 | HEADER SECTION |
 +----------------+
 +---------+
 |FLOAT32 | EOHMARKER, value=357.0
 +---------+
 +----------------+
 | DATA SECTION |
 +----------------+

I. HEADER SECTION

 The header section contains: the version number of the file, a title
 of the file, the names of the variables to be plotted, the
 descriptions of all zones to be read in and all text and geometry
197

Binary Data File Format
 definitions.

 i. Magic number, Version number
 +-----------+
 | “#!TDV111”| 8 Bytes, exact characters “#!TDV111”.
 +-----------+ Version number follows the “V” and
 consumes the next 3 characters (for
 example: “V75 “, “V101”).

 ii. Integer value of 1.
 +-----------+
 | INT32 | This is used to determine the byte order
 +-----------+ of the reader, relative to the writer.

 iii. Title and variable names.
 +-----------+
 | INT32 | FileType: 0 = FULL,
 +-----------+ 1 = GRID,
 2 = SOLUTION
 +-----------+
 | INT32*N | The TITLE. (See note 1.)
 +-----------+
 +-----------+
 | INT32 | Number of variables (NumVar) in the datafile.
 +-----------+
 +-----------+
 | INT32*N | Variable names.
 +-----------+ N = L[1] + L[2] + L[NumVar]
 where:
 L[i] = length of the ith variable name + 1
 (for the terminating 0 value).
 (See note 1.)
 iv. Zones
 +-----------+
 | FLOAT32 | Zone marker. Value = 299.0
 +-----------+
 +-----------+
 | INT32*N | Zone name. (See note 1.)
 +-----------+ N = (length of zone name) + 1.
 +-----------+
198

 | INT32 | ParentZone: Zero-based zone number within this
 +-----------+ datafile to which this zone is
 a child.
 +-----------+
 | INT32 | StrandID: -2 = pending strand ID for assignment
 +-----------+ by Tecplot
 -1 = static strand ID
 0 <= N < 32700 valid strand ID
 +-----------+
 | FLOAT64 | Solution time.
 +-----------+
 +-----------+
 | INT32 | Zone Color (set to -1 if you want Tecplot to
 +-----------+ determine).
 +-----------+
 | INT32 | ZoneType 0=ORDERED, 1=FELINESEG,
 +-----------+ 2=FETRIANGLE, 3=FEQUADRILATERAL,
 4=FETETRAHEDRON, 5=FEBRICK,
 6=FEPOLYGON, 7=FEPOLYHEDRON
 +-----------+
 | INT32 | DataPacking 0=Block, 1=Point
 +-----------+ FEPOLYGON and FEPOLYHEDRON zones require Block
 formatting.
 +-----------+
 | INT32 | Specify Var Location.
 +-----------+ 0 = Don’t specify, all data is located
 at the nodes.
 1 = Specify
 if “specify var location” == 1
 +-----------+
 | INT32*NV | Variable Location (only specify if above is 1).
 +-----------+ 0 = Node, 1 = Cell Centered (See note 5.)
 +-----------+
 | INT32 | Are raw local 1-to-1 face neighbors supplied?
 +-----------+ (0=FALSE 1=TRUE). These raw values are a
 compact form of the local 1-to-1 face neighbors.
 If supplied, Tecplot assumes that the face
 neighbors are fully specified. As such, it
 will not perform auto face neighbor assignment.
 This improves Tecplot’s time to first plot.
 See the data section below for format details.
 ORDERED and FELINESEG zones must specify 0 for
199

Binary Data File Format
 this value because raw face neighbors are not
 defined for these zone types. FEPOLYGON and
 FEPOLYHEDRON zones must specify 0 for this value
 since face neighbors are defined in the face map
 for these zone types.

 +-----------+
 | INT32 | Number of miscellaneous user-defined face
 +-----------+ neighbor connections (value >= 0). This value
 is in addition to the face neighbors supplied
 in the raw section. FEPOLYGON and FEPOLYHEDRON
 zones must specify 0.

 if “number of miscellaneous user-defined
 face neighbor connections” != 0
 +-----------+
 | INT32 | User defined face neighbor mode
 +-----------+ (0=Local 1-to-1, 1=Local 1-to-many,
 2=Global 1-to-1, 3=Global 1-to-many)
 if FE Zone:
 +-----------+
 | INT32 | Indicates if the finite element face neighbors
 +-----------+ are completely specified by the miscellaneous
 face neighbors given: (0=NO, 1=YES). If yes,
 then Tecplot will not perform auto assignment
 of face neighbors otherwise all faces not
 specified are considered boundaries. If no,
 then Tecplot will perform auto-assignment of
 the face neighbors unless the raw face neighbor
 array was supplied. This option is not valid
 for ORDERED zones.
 if Ordered Zone:
 +-----------+
 | INT32*3 | IMax,JMax,KMax
 +-----------+

 if FE Zone:
 +-----------+
 | INT32 | NumPts
 +-----------+
 if ZoneType is FEPOLYGON or FEPOLYHEDRON:
 +-----------+
200

 | INT32 | NumFaces
 +-----------+
 +-----------+
 | INT32 | Total number of face nodes. For FEPOLYGON
 +-----------+ zones, this is NumFaces*2.
 +-----------+
 | INT32 | Total number of boundary faces. If any
 +-----------+ boundary faces exist, include one to represent
 no neighboring element.
 +-----------+
 | INT32 | Total number of boundary connections.
 +-----------+

 +-----------+
 | INT32 | NumElements
 +-----------+
 +-----------+
 | INT32*3 | ICellDim,JCellDim,
 +-----------+ KCellDim (for future use; set to zero)

 For all zone types (repeat for each Auxiliary data name/value pair):
 +-----------+
 | INT32 | 1=Auxiliary name/value pair to follow
 +-----------+ 0=No more Auxiliary name/value pairs.

 If the above is 1, then supply the following:
 +-----------+
 | INT32*N | name string (See note 1.)
 +-----------+
 +-----------+
 | INT32 | Auxiliary Value Format
 +-----------+ (Currently only allow 0=AuxDataType_String)

 +-----------+
 | INT32*N | Value string (See note 1.)
 +-----------+

 v. Geometries
 +-----------+
 | FLOAT32 | Geometry marker. Value = 399.0
 +-----------+
201

Binary Data File Format
 +-----------+
 | INT32 | Position CoordSys 0=Grid, 1=Frame,
 +-----------+ 2=FrameOffset(not used),
 3= OldWindow(not used),
 4=Grid3D
 +-----------+
 | INT32 | Scope 0=Global 1=Local
 +-----------+
 +-----------+
 | INT32 | DrawOrder 0=After, 1=Before
 +-----------+
 +-----------+
 | FLOAT64*3 | (X or Theta),(Y or R),(Z or dummy)
 +-----------+ i.e. the starting location
 +-----------+
 | INT32 | Zone (0=all)
 +-----------+
 +-----------+
 | INT32 | Color
 +-----------+
 +-----------+
 | INT32 | FillColor
 +-----------+
 +-----------+
 | INT32 | IsFilled (0=no 1=yes)
 +-----------+
 +-----------+
 | INT32 | GeomType 0=Line, 1=Rectangle 2=Square,
 +-----------+ 3=Circle, 4=ellipse
 +-----------+
 | INT32 | LinePattern 0=Solid 1=Dashed 2=DashDot
 +-----------+ 3=DashDotDot 4=Dotted
 5=LongDash
 +-----------+
 | FLOAT64 | Pattern Length
 +-----------+
 +-----------+
 | FLOAT64 | Line Thickness
 +-----------+
 +-----------+
 | INT32 | NumEllipsePts
 +-----------+
202

 +-----------+
 | INT32 | Arrowhead Style 0=Plain, 1=Filled, 2=Hollow
 +-----------+
 +-----------+
 | INT32 | Arrowhead Attachment 0=None, 1=Beg, 2=End, 3=Both
 +-----------+
 +-----------+
 | FLOAT64 | Arrowhead Size
 +-----------+
 +-----------+
 | FLOAT64 | Arrowhead Angle
 +-----------+
 +-----------+
 | IN32*N | Macro Function Command (string: N = Length+1)
 +-----------+
 +-----------+
 | INT32 | Polyline Field Data Type
 +-----------+ 1=Float, 2=Double (GTYPE)
 +-----------+
 | INT32 | Clipping (0=ClipToAxes, 1=ClipToViewport,
 +-----------+ 2=ClipToFrame)

If the geometry type is line then:
 +-----------+
 | INT32 | Number of polylines
 +-----------+
 +-----------+
 | INT32 | Number of points, line 1.
 +-----------+
 +-----------+
 | GTYPE*N | X-block geometry points N=NumPts
 +-----------+
 +-----------+
 | GTYPE*N | Y-block geometry points N=NumPts
 +-----------+
 +-----------+
 | GTYPE*N | Z-block geometry points N=NumPts (Grid3D Only)
 +-----------+
 .
 .
 .
203

Binary Data File Format
If the geometry type is Rectangle then
 +-----------+
 | GTYPE*2 | X and Y offset for far corner of rectangle
 +-----------+

If the geometry type is Circle then
 +-----------+
 | GTYPE | Radius
 +-----------+

If the geometry type is Square then
 +-----------+
 | GTYPE | Width
 +-----------+

If the geometry type is Ellipse then
 +-----------+
 | GTYPE*2 | X and Y Radii
 +-----------+

 vi. Text
 +-----------+
 | FLOAT32 | Text marker. Value=499.0
 +-----------+
 +-----------+
 | INT32 | Position CoordSys 0=Grid, 1=Frame,
 +-----------+ 2=FrameOffset(not used),
 3= OldWindow(not used),
 4=Grid3D(New to V10)
 +-----------+
 | INT32 | Scope 0=Global 1=Local
 +-----------+
 +-----------+
 | FLOAT64*3 | (X or Theta),(Y or R),(Z or dummy)
 +-----------+ Starting Location
 +-----------+
 | INT32 | FontType
 +-----------+
 +-----------+
 | INT32 | Character Height Units 0=Grid, 1=Frame, 2=Point
204

 +-----------+
 +-----------+
 | FLOAT64 | Height of characters
 +-----------+
 +-----------+
 | INT32 | Text Box type 0=NoBox 1=Hollow 2=Filled
 +-----------+
 +-----------+
 | FLOAT64 | Text Box Margin
 +-----------+
 +-----------+
 | FLOAT64 | Text Box Margin Linewidth
 +-----------+
 +-----------+
 | INT32 | Text Box Outline Color
 +-----------+
 +-----------+
 | INT32 | Text Box Fill Color
 +-----------+
 +-----------+
 | FLOAT64 | Angle
 +-----------+
 +-----------+
 | FLOAT64 | Line Spacing
 +-----------+
 +-----------+
 | INT32 | Text Anchor. 0=left, 1=center,
 +-----------+ 2=right, 3=midleft
 4=midcenter 5=midright,
 6=headleft 7=headcenter
 8=headright
 +-----------+
 | INT32 | Zone (0=all)
 +-----------+
 +-----------+
 | INT32 | Color
 +-----------+
 +-----------+
 | INT32*N | MacroFunctionCommand (string: N = Length + 1)
 +-----------+
 +-----------+
 | INT32 | Clipping (0=ClipToAxes,
205

Binary Data File Format
 +-----------+ 1=ClipToViewport, 2=ClipToFrame)
 +-----------+
 | INT32*N | Text. N=Text Length+1
 +-----------+

 vii.CustomLabel
 +-----------+
 | FLOAT32 | CustomLabel Marker; F=599
 +-----------+
 +-----------+
 | INT32 | Number of labels
 +-----------+
 +-----------+
 | INT32*N | Text for label 1. (N=length of label + 1)
 +-----------+ See note 1.
 +-----------+
 | INT32*N | Text for label 2. (N=length of label + 1)
 +-----------+ See note 1.
 .
 .
 .
 +-----------+
 | INT32*N | Text for label NumLabels.
 +-----------+ (N=length of label + 1) See note 1.

 viii.UserRec
 +-----------+
 | FLOAT32 | UserRec Marker; F=699
 +-----------+
 +-----------+
 | INT32*N | Text for UserRec. See note 1.
 +-----------+

 ix. Dataset Auxiliary data.
 +-----------+
 | FLOAT32 | DataSetAux Marker; F=799.0
 +-----------+
 +-----------+
 | INT32*N | Text for Auxiliary “Name”. See note 1.
 +-----------+
 +-----------+
 | INT32 | Auxiliary Value Format (Currently only
206

 +-----------+ allow 0=AuxDataType_String)
 +-----------+
 | INT32*N | Text for Auxiliary “Value”. See note 1.
 +-----------+
 x. Variable Auxiliary data.
 +-----------+
 | FLOAT32 | VarAux Marker; F=899.0
 +-----------+
 +-----------+
 | INT32*N | Variable number (zero based value)
 +-----------+
 +-----------+
 | INT32*N | Text for Auxiliary “Name”. See note 1.
 +-----------+
 +-----------+
 | INT32 | Auxiliary Value Format (Currently only
 +-----------+ allow 0=AuxDataType_String)
 +-----------+
 | INT32*N | Text for Auxiliary “Value”. See note 1.
 +-----------+

II. DATA SECTION (don’t forget to separate the header from the data
 with an EOHMARKER). The data section contains all of the data
 associated with the zone definitions in the header.

 i. For both ordered and fe zones:
 +-----------+
 | FLOAT32 | Zone marker Value = 299.0
 +-----------+
 +-----------+
 | INT32*N | Variable data format, N=Total number of vars
 +-----------+ 1=Float, 2=Double, 3=LongInt,
 4=ShortInt, 5=Byte, 6=Bit
 +-----------+
 | INT32 | Has passive variables: 0 = no, 1 = yes.
 +-----------+
 if “has passive variables” != 0
 +-----------+
 | INT32*NV | Is variable passive: 0 = no, 1 = yes
 +-----------+ (Omit entirely if “Has passive variables” is 0).
 +-----------+
 | INT32 | Has variable sharing 0 = no, 1 = yes.
207

Binary Data File Format
 +-----------+
 if “has variable sharing” != 0
 +-----------+
 | INT32*NV | Zero based zone number to share variable with
 +-----------+ (relative to this datafile). (-1 = no sharing).
 (Omit entirely if “Has variable sharing” is 0).
 +-----------+
 | INT32 | Zero based zone number to share connectivity
 +-----------+ list with (-1 = no sharing). FEPOLYGON and
 FEPOLYHEDRON zones use this zone number to
 share face map data.

 Compressed list of min/max pairs for each non-shared and non-passive
 variable. For each non-shared and non-passive variable (as specified
 above):
 +-----------+
 | FLOAT64 | Min value
 +-----------+
 +-----------+
 | FLOAT64 | Max value
 +-----------+
 +-----------+
 | xxxxxxxxxx| Zone Data. Each variable is in data format as
 +-----------+ specified above.

 ii. specific to ordered zones
 if “zone number to share connectivity list with” == -1 &&
 “num of misc. user defined face neighbor connections” != 0
 +-----------+
 | INT32*N | Face neighbor connections.
 +-----------+ N = (number of miscellaneous user defined
 face neighbor connections) * P
 (See note 5 below).

 iii. specific to fe zones
 if ZoneType is NOT FEPOLYGON or FEPOLYHEDRON:
 if “zone number to share connectivity lists with” == -1
 +-----------+
 | INT32*N | Zone Connectivity Data N=L*JMax
 +-----------+ (see note 2 below).
208

 if “zone number to share connectivity lists with” == -1 &&
 “raw local 1-to-1 face neighbors are supplied”
 +-----------+
 | INT32*N | Raw local 1-to-1 face neighbor array.
 +-----------+ N = (NumElements * NumFacesPerElement)
 (See note 3 below).

 if “zone number to share connectivity lists with” == -1 &&
 “num of misc. user defined face neighbor connections” != 0
 +-----------+
 | INT32*N | Face neighbor connections.
 +-----------+ N = (number of miscellaneous user defined
 face neighbor connections) * P
 (See note 4 below).

 if ZoneType is FEPOLYGON or FEPOLYHEDRON:
 if “zone number to share face map data with” == -1
 +-----------+
 | INT32*F | Face node offsets into the face nodes array
 +-----------+ below. Does not exist for FEPOLYGON zones.
 F = NumFaces+1.

 +-----------+
 | INT32*FN | Face nodes array containing the node numbers
 +-----------+ for all nodes in all faces.
 FN = total number of face nodes.

 +-----------+
 | INT32*F | Elements on the left side of all faces.
 +-----------+ Boundary faces use a negative value which is
 the negated offset into the face boundary
 connection offsets array. A value of “-1”
 indicates there is no left element.
 F = NumFaces.

 +-----------+
 | INT32*F | Elements on the right side of all faces. See
 +-----------+ description of left elements above for more
 details. F = NumFaces.

 if “total number of boundary faces” != 0
209

Binary Data File Format
 +-----------+
 | INT32*NBF | Boundary face connection offsets into the
 +-----------+ boundary face connecion elements array and
 the boundary face connection zones array.
 The number of elements for a face (F) is
 determined by offset[-o] - offset[-o-1]
 where ‘o’ is the negative value from either
 the left or right elements arrays above.
 Offset[0] = 0. Offset[1] = 0 so that -1 as
 the left or right element always indicates
 no neighboring element. If the number of
 elements is 0, then there is no neighboring
 element.
 NBF = total number of boundary faces + 1.

 +-----------+
 | INT32*NBI | Boundary face connection elements. A value of
 +-----------+ “-1” indicates there is no element on part of
 the face.
 NBI = total number of boundary connections.

 +-----------+
 | INT16*NBI | Boundary face connection zones. A value of
 +-----------+ “-1” indicates the current zone.
 NBI = total number of boundary connections.

NOTES:

1. All character data is represented by INT32 values.

 Example: The letter “A” has an ASCII value of 65. The WORD
 written to the data file for the letter “A” is then
 65. In fortran this could be done by doing the following:

 Integer*32 I
 .
 .
 I = ICHAR(‘A’);

 WRITE(10) I
210

 All character strings are null terminated
 (i.e. terminated by a zero value)

2. This represents JMax sets of adjacency zero based indices where each
 set contains L values and L is
 2 for LINESEGS
 3 for TRIANGLES
 4 for QUADRILATERALS
 4 for TETRAHEDRONS
 8 for BRICKS

3. The raw face neighbor array is dimensioned by (number of elements for
 the zone) times (the number of faces per element), where each member
 of the array holds the zero-based element neighbor of that face. A
 boundary face is one that has no neighboring element and is
 represented by a -1. Faces should only be neighbors if they logically
 share nodes and they should be reciprocal.

4. FaceNeighbor Mode # values Data

 LocalOneToOne 3 cz,fz,cz
 LocalOneToMany nz+4 cz,fz,oz,nz,cz1,cz2,...,czn
 GlobalOneToOne 4 cz,fz,ZZ,CZ
 GlobalOneToMany 2*nz+4 cz,fz,oz,nz,ZZ1,CZ1,ZZ2,CZ2,...,ZZn,CZn

 Where:
 cz = cell in current zone (zero based)
 fz = face of cell in current zone (zero based)
 oz = face obscuration flag (only applies to one-to-many):
 0 = face partially obscured
 1 = face entirely obscured
 nz = number of cell or zone/cell associations
 (only applies to one-to-many)
 ZZ = remote Zone (zero based)
 CZ = cell in remote zone (zero based)

 cz,fz combinations must be unique and multiple entries are
 not allowed. Additionally, Tecplot assumes that with the
211

Binary Data File Format
 one-to-one face neighbor modes, a supplied cell face is
 entirely obscured by its neighbor. With one-to-many, the
 obscuration flag must be supplied.

 Face neighbors that are not supplied are run through
 Tecplot’s auto face neighbor generator (FE only).

5. Cell centered variable (DATA SECTION)
 To make reading of cell centered binary data efficient, Tecplot stores
 IMax*JMax*KMax numbers of cell centered values, where IMax, JMax,
 and KMax represent the number of points in the I, J, and K directions.
 Therefore extra zero values (ghost values) are written to the data file
 for the slowest moving indices. For example, if your data’s IJK
 dimensions are 2x3x2, a cell-centered variable will have 1x2x1
 (i.e. (I-1)x(J-1)x(K-1)) significant values. However, 2x3x2 values must
 be written out because it must include the ghost values. Assume that the
 two significant cell-centered values are 1.5 and 12.5. The ghost values
 will be output with a zero value.

 So if the zone was dimensioned 2x3x2 its cell centered variable would be
 represented as follows:
 1.5 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 If the zone was dimensioned 3x2x2 its cell centered variable would be
 represented as follows:
 1.5 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 and if the zone was dimensioned 2x2x3 its cell centered variable would be
 represented as follows:
 1.5 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 For large variables the wasted space is less significant that it
 is for the small example above.

*/
212

Anchor
Index

A
Anchor

text position 152
ASCII Data

conversion to binary 133, 189
Custom Label Record 157
File Format 134–160
finite-element data 170–189
Geometry Record 153–157
ordered data 160–169
parameters 159
syntax 144
Text Record 150–153
Zone Record 137–150

ASCII format
syntax 133

Auxiliary Data 14, 141
variable auxiliary data 39, 159
zone auxiliary data 41

Axis Labels 30

B
Binary Data

byte order 22
conversion from ASCII 133, 189
File Format 197–212
geometry creation 23
text record 35
user record 39

Binary files
debugging 10
writing to multiple 12, 21
writing to multiple, example 121

Block Data 143
Boundary Connection 48
Boundary Face 48
Boundary Map 150
Brick cells 170
Byte order 22

C
Cell-centered Data 18, 143
Connected Boundary Face 48
Connectivity list 145

cell-based finite elements 31
face-based finite elements 32

sharing 140, 150
Custom Label Record

ASCII data 157
binary data 30

D
Data Arrangement 17
Data conversion 133, 189
Data File Format

ASCII 134–160
binary 197–212

Data Types 142

E
EOF 19
Examples

ASCII
auxiliary data 158
finite-element 174–189
Geometry 156
ordered data 161–169
Text Record 153

Binary
Face Neighbors 54
geometry record 128
IJ-ordered 118
polygonal data 65
polyhedral zones 73, 92, 113
text record 126

F
Face Neighbors 146, 150

data 19
example 54
mode 147
polyhedral zones 52
right-hand rule 52
scope 147

Face Numbering
cell-based finite elements 148

Facemap data 32, 148
polyhedral zones 50

File
grid file 30
shared grid 30
solution file 30

File Format
ASCII 134–160
Binary Data 197–212

File Header 135
213

INDEX
Finite-element data
ASCII format 170–189
boundary map 150
bricks 170
connectivity list 31, 32, 145
face neighbors 19
face numbering (cell-based) 148
facemap 148
line segments 170
polygons 170
polyhedra 171
polyhedral format 32
quadrilaterals 170
tetrahedron 170
triangles 170

Full file 30
Function reference

TecIO library 14–48
Function sequence

binary files 12

G
Geometry Record

ASCII data 153–157
binary

example 128
syntax 23

data (ASCII) 155
origin positions 28

Global one-to-many 147
Global one-to-one 147
Grid

sharing 30
Grid File 30

H
Header

file header 135
zone header 42

I
Irregular data 160

L
Labels, custom

binary data 30
Legend text 30
Line Segments 170
Local one-to-many 147
Local one-to-one 147

M
Metadata, see Auxiliary Data

N
Neighboring elements 150
Nodal Data 17, 143

O
Ordered Data 160–169

Example (binary) 118
Examples

2D Field Plot 168
3D Field Plot 169
IJK-ordered 164
IJ-ordered 163
I-ordered 162

Examples (ASCII) 161–169
IJK-ordered data 161
IJ-ordered data 160
I-ordered data 160
one-dimensional 160
three-dimensional 161
two-dimensional 160

Origin positions
geometry 28

P
Parameters

ASCII data file 159
Pltview 10
Polygonal zones 170
Polyhedral cells 171
Polyhedral data

boundary connection 48
boundary face 48
Examples (binary)

multiple zones (2D) 92
multiple zones (3D) 73
polygon 65
polyhedral 113

face neighbors 52
facemap data 50

Preplot 133, 189

Q
Quadrilateral cells 170

R
Right-hand rule
214

Scatter Plots 160
face neighbors 52

S
Scatter Plots 160
Shared grid 30
Solution file 30
Syntax

ASCII format 133
TecIO functions 14–48

T
TECAUXSTR111 14
TECDAT111 15
TECEND111 19
TECFACE 19
TECFIL 21
TECFOREIGN 22
TECGEO 23
TecIO functions 14–48
TecIO library 9

deprecated functions 11
function calling sequence 12
function reference 14–48
linking with 13

TECLAB 30
TECNOD 31
TECPOLY 32
TECTXT 35
TECUSR 39
TECVAUXSTR 39
TECZAUXSTR 41
TECZNE 42
Tetrahedral cells 170
Text Anchor 152
Text Record

ASCII data 150–153
Binary Data 35

example 126
Text Anchor positions 152

Tick mark Labels 30
Triangular Cells 170
Triangulation 160

U
Unstructured Data 160
User record

binary data 39

V
Variable auxiliary data 39

Variable Location 140, 142–144
Variable Sharing 140, 144, 172
ViewBinary 10

X
XY Plot

example 165
XY Plots 160

Z
Zone auxiliary data 41
Zone Footer 145
Zone header 42
Zone Record 137–150
Zone Type

finite-element zones 170
Zone Types 138, 160

FEBRICK 170
FELINESEG 170
FEPOLYGON 170
FEPOLYHEDRAL 171
FEQUADRILATERAL 170
FETETRAHEDRON 170
FETRIANGLE 170
215

INDEX
216

	Table of Contents
	Chapter 1 Introduction
	1 - 1 Creating Data Files for Both Tecplot 360 & Tecplot Focus
	1 - 2 Best Practices

	Chapter 2 Binary Data
	2 - 1 Getting Started
	2 - 2 Viewing Your Output
	2 - 3 Binary Function Notes
	2- 3.1 Deprecated Binary Functions
	2- 3.2 Character Strings in FORTRAN
	2- 3.3 Boolean Flags

	2 - 4 Binary Data File Function Calling Sequence
	2 - 5 Writing to Multiple Binary Data Files
	2 - 6 Linking with the TecIO Library
	2- 6.1 UNIX/Linux/Macintosh:
	2- 6.2 Windows:

	2 - 7 Binary Data File Function Reference
	2 - 8 Defining Polyhedral and Polygonal Data
	2- 8.1 Boundary Faces and Boundary Connections
	2- 8.2 FaceNodeCounts and FaceNodes
	2- 8.3 FaceRightElems and FaceLeftElems
	2- 8.4 FaceBoundaryConnectionElements and Zones

	2 - 9 Examples
	2- 9.1 Face Neighbors
	2- 9.2 Polygonal Example
	2- 9.3 Multiple Polyhedral Zones
	2- 9.4 Multiple Polygonal Zones
	2- 9.5 Polyhedral Example
	2- 9.6 IJ-ordered zone
	2- 9.7 Switching between two files
	2- 9.8 Text Example
	2- 9.9 Geometry Example

	Chapter 3 ASCII Data
	3 - 1 Preplot
	3 - 2 Syntax Rules & Limits
	3 - 3 ASCII File Structure
	3- 3.1 File Header
	3- 3.2 Zone Record
	3- 3.3 Text Record
	3- 3.4 Geometry Record
	3- 3.5 Custom Labels Record
	3- 3.6 Data Set Auxiliary Data Record
	3- 3.7 Variable Auxiliary Data Record
	3- 3.8 ASCII Data File Parameter Assignment Values

	3 - 4 Ordered Data
	3- 4.1 I-Ordered Data
	3- 4.2 IJ-Ordered Data
	3- 4.3 IJK-Ordered Data
	3- 4.4 Ordered Data Examples

	3 - 5 Finite-Element Data
	3- 5.1 Variable and Connectivity List Sharing
	3- 5.2 Finite-Element Data Set Examples

	3 - 6 ASCII Data File Conversion to Binary
	3- 6.1 Preplot Options
	3- 6.2 Preplot Examples

	Chapter 4 Glossary
	Appendix A Binary Data File Format
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X
	Z

